AP838A - Mesylate trihydrate salts of 5-(2-(4-(1,2-benzisothiazol-3-y1)-1-piperaziny1)-ethy1) -6-chloro-1,3-dihydro-2h-indol-2-one. - Google Patents
Mesylate trihydrate salts of 5-(2-(4-(1,2-benzisothiazol-3-y1)-1-piperaziny1)-ethy1) -6-chloro-1,3-dihydro-2h-indol-2-one. Download PDFInfo
- Publication number
- AP838A AP838A APAP/P/1997/000978A AP9700978A AP838A AP 838 A AP838 A AP 838A AP 9700978 A AP9700978 A AP 9700978A AP 838 A AP838 A AP 838A
- Authority
- AP
- ARIPO
- Prior art keywords
- chloro
- indol
- mesylate trihydrate
- benzisothiazol
- ziprasidone
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/06—Antimigraine agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/22—Anxiolytics
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Psychiatry (AREA)
- Pain & Pain Management (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
The invention relates to the mesylate trihydrate salt of 5-(2-{4-(1,2-benzisothiazol-3-yl)-1 -piperazinyi)ethyl)-6-chloro-1,3-dihydro-2H-indol-2-one, pharmaceutical compositions containing said mesylate trihydrate salt, and methods of using said mesylate trihydrate salt to treat psychotic disorders.
Description
5 MESYLATE TRIHYDRATE OF 5-(2-(4-(1,2-BENZISOTH IAZOL-3YL)-1-PIPERAZINYL)-ETHYL)-6-CHLORO-1.3-DIHYDRQ-2H-INDOL-2-ONE
Background of the Invention
The invention is directed to the mesylate trihydrate salt of 5-(2-(4-(1,2benzisothiazol-3-yl)-1 -piperazinyl)ethyl)-6-chloro-1,3-dihydro-2H-indol-2-one (hereafter ziprasidone mesylate trihydrate), pharmaceutical compositions containing ziprasidone mesylate trihydrate, and methods of administering ziprasidone mesylate trihydrate to treat psychotic diseases. Ziprasidone is a potent psychotic agent and is therefore useful for treating various disorders including schizophrenia, migraine pain and anxiety. United States Patent 5,312,925 refers to ziprasidone hydrochloride monohydrate, and states that ziprasidone hydrochloride monohydrate is substantially hygroscopically stable, which alleviates potential problems associated with weight changes of the active ingredient during the manufacture of capsules or tablets. United States Patent 5,312,925 is herein incorporated by reference in its entirey. Ziprasidone hydrochloride monohydrate, however, has low aqueous solubility and, as a result, is more appropriate for capsule or tablet formulation than for injectable dosage forms.
Ziprasidone mesylate trihydrate also possesses hygroscopic stability.
Ziprasidone mesylate trihydrate has the added advantage of having significantly greater aqueous solubility than the hydrochloride monohydrate, which makes the mesylate trihydrate more suitable for injectable dosage forms than the hydrochloride
.../ 25 monohydrate. Further, of the tour crystalline forms of ziprasidone mesylate, the
Ό mesylate trihydrate is the most thermodynamically stable in an aqueous medium at ambient conditions. This makes ziprasidone mesylate trihydrate advantageously suited for the preparation of consistent and precise dosage forms involving an aqueous medium.
Summary of the Invention
The present invention relates to the mesylate trihydrate salt of 5-(2-(4-(1,2benzisothiazol-3-yl)-1-piperazinyl)ethyl)-6-chloro-1,3-dihydro-2H-indol-2-one.
This invention also relates to a pharmaceutical composition for the treatment of a psychotic disorder, such as schizophrenia, migraine pain or anxiety, comprising an 35 amount of the mesylate trihydrate salt of 5-(2-(4-(1,2-benzisothiazol-3-yl)-1piperazinyl)ethyl)-6-chloro-1,3-dihydro-2H-indol-2-one that is effective in treating said disorder, and a pharmaceutically acceptable carrier.
AP/P/ 97 / 0 0 9 78
AP Ο Ο Ο 8 3 8
-2This invention also relates to a method of treating a psychotic disorder, such as schizophrenia, migraine pain or anxiety, in a mammal, including a human, comprising administering to said mammal an amount of the mesylate trihydrate salt of 5-(2-(4-(1,2benzisothiazol-3-yl)-1-piperazinyl)ethyl)-6-chloro-1,3-dihydro-2H-indol-2-one that is effective in treating said disorder.
Description of the Drawings
Fig. 1 depicts the X-ray powder diffraction spectrum of ziprasidone mesylate trihydrate expressed as intensity (Cps) versus diffraction angle (two-theta degrees).
Fig. 2 depicts the structure of ziprasidone mesylate trihydrate as determined by 10 single crystal X-ray crystallographic analysis.
Fig. 3 shows a photomicrograph of ziprasidone mesylate trihydrate (prism crystals).
Table 1 below identifies selected peaks from the spectra of Figure 1 by diffraction angle (two-theta), d-spacing, maximum intensity (max. int.), and relative intensity (rel. int.).
Table 1
X-RAY POWDER DIFFRACTION DATA FOR
ZIPRASIDONE MESYLATE TRIHYDRATE
Two-Theta (deqrees) | D-spacing (deqrees) | Max. Int. (counts/sec) | Rel. int.(%) |
7.680 | 11.5025 | 84.00 | 8.54 |
9.657 | 9.1515 | 216.00 | 21.95 |
10.827 | 8.1650 | 48.00 | 4.88 |
12.205 | 7.2455 | 216.00 | 21.95 |
13.203 | 6.7002 | 803.00 | 81.61 |
13.564 | 6.5227 | 329.00 | 33.43 |
15.240 | 5.8089 | 191.00 | 19.41 |
15.507 | 5.7095 | 388.00 | 39.43 |
15.923 | 5.5612 | 836.00 | 84.96 |
16.680 | 5.3106 | 100.00 | 10.16 |
17.000 | 5.2112 | 103.00 | 10.47 |
17.946 | 4.9386 | 428.00 | 43.50 |
AP/P/ 97 / 0 0 9 78 •Wi?
AP 0 0 0 8 3 8
Two-Theta (deorees) | D-spacing (deqrees) | Max. int. (counts/sec) | Rel. Int.(%) |
18.794 | 4.7178 | 383.00 | 38.92 |
19.881 | 4.4622 | 195.00 | 19.82 |
20.491 | 4.3306 | 93.00 | 9.45 |
21.585 | 4.1136 | 603.00 | 61.28 |
22.179 | 4.0047 | 984.00 | 100.00 |
23.472 | 3.7870 | 282.00 | 28.66 |
24.359 | 3.6511 | 240.00 | 24.39 |
24.918 | 3.5705 | 429.00 | 43.60 |
25.280 | 3.5201 | 159.00 | 16.16 |
26.034 | 3.4198 | 221.00 | 22.46 |
26.832 | 3.3199 | 196.00 | 19.92 |
27.594 | 3.2300 | 132.00 | 13.41 |
28.299 | 3.1511 | 261.00 | 26.52 |
29.151 | 3.0608 | 86.00 | 8.74 |
29.819 | 2.9938 | 197.00 | 20.02 |
30.361 | 2.9415 | 138.00 | 14.02 |
30.792 | 2.9014 | 112.00 | 11.38 |
32.448 | 2.7570 | 102.00 | 10.37 |
33.559 | 2.6682 | 73.00 | 7.42 |
34.264 | 2.6149 | 159.00 | 16.16 |
35.069 | 2.5567 | 165.00 | 16.77 |
35.742 | 2.5100 | 84.00 | 8.54 |
38.182 | 2.3551 | 158.00 | 16.06 |
AP/P/ 97/00978
Detailed Description of the Invention
Ziprasidone mesylate exists in four distinct crystalline forms: ziprasidone mesylate anhydrous (lath crystal), ziprasidone mesylate dihydrate (lath crystal), ziprasidone mesylate dihydrate (needle crystal), and ziprasidone mesylate trihydrate (prism crystal). Each crystal form has distinct characteristics, such as a distinct powder
ΑΡ ϋ υ Ο 8 3 8
-4i
Α.~$
X-ray diffraction pattern, a distinct single crystal X-ray, and a distinct crystal shape that can be observed by photomicrograph. The lath and needle crystals of ziprasidone mesylate dihydrate and the lath crystals of ziprasidone anhydrous are relatively tong and thin in contrast to the prism crystals of ziprasidone mesylate trihydrate (Figure 3).
Ziprasidone mesylate anhydrous crystals are distinct, though similar in shape to the ziprasidone dihydrate lath crystals. The photomicrograph of Figure 3 was obtained using an Olympus polarizing microscope (model BH-2) equiped with a halogen lamp, binocular eye piece, polarizing filter and Sony 3ccd video camera with Sony color printer.
The characteristic X-ray powder diffraction spectra of ziprasidone mesylate trihydrate is depicted in Figure 1. The structure of ziprasidone mesylate trihydrate as determined by single crystal X-ray crystallographic analysis is depicted in Figure 2. The X-ray powder diffraction spectra of Figure 1 and the single crystal X-ray for Figure 2 were taken on a Siemens R3RA/v diffractometer. Ziprasidone mesylate trihydrate is further characterized by its water content which is indicated by its Karl Fischer (KF) value of 9.6 ± 1.0. The ziprasidone mesylate dihydrates (lath and needle) are the subject of co-pending United States provisional application entitled Mesylate Dihydrate Salts of 5-(2-(4-(1,2-Benzisothiazol-3-yl)-1-piperazinyl)ethyl}-6-chloro-1, 3-d i hydro-2 Hindol-2-one (Pfizer docket number PC 9573), filed concurrently herewith. The foregoing co-pending United States provisional application is incorporated herein by reference in its entirety.
In an aqueous medium at ambient temperature, ziprasidone mesylate trihydrate is the most thermodynamically stable form of the four ziprasidone mesylate forms. As a result, the mesylate trihydrate is the preferred mesylate form for dosage forms involving an aqueous medium. In particular, the mesylate trihydrate is particularly suited for aqueous dosage forms for parenteral administration. The anhydrous mesylate form was found to be hygroscopic when exposed to air (humidity). This makes formulation of dosages difficult because the active ingredient changes in weight during the process of preparing the dosages. The relative thermodynamic stability of the three ziprasidone mesylate hydrated crystal forms was determined in a series of bridging experiments where mixtures of the crystal forms were allowed to equilibrate.
For the bridging experiments, 200 mg samples were allowed to equilibrate in water (4 mL) at ambient temperature (22-25°C). Two samples each of 90/10 (w/w) and 10/90
AP/P/ 9 7 / 0 0 9 78
.Htfj
V. J1
AP ύ u u8 3 8
-5(w/w) mixtures of the two different identified polymorphs of ziprasidone mesylate (prism vs. dihydrate (lath), prism vs. dihydrate (needle), dihydrate (needle) vs. dihydrate (lath)) were evaluated. After equilibration (12-13 days), the solids were evaluated for polymorph changes and the supernatants were assayed by HPLC to determine solubility. It was found that the stability of the crystal forms to interconversion follows the trend observed for the solubility of the crystal forms, as shown in Table 2 below. Ziprasidone mesylate trihydrate was thermodynamically favored over the dihydrate forms.
Each of the four ziprasidone mesylate forms is significantly more soluble than ziprasidone hydrochloride monohydrate which has a solubility of 0.08 mg/ml in water at ambient temperature. The solubility of the four ziprasidone mesylate forms is indicated below in Table 2.
Table 2
Aqueous Solubility Of Ziprasidone Mesylate Polymorphs
POLYMORPH | SOLUBILITY IN WATER |
trihydrate dihydrate (lath) dihydrate (needle) anhydrous | 0.73 mg/mL 1.11 mg/mL 1.10 mg/mL 1.27 mg/mL |
AP/P/ 97 / 0 0 9 78
Ziprasidone mesylate trihydrate may be prepared from the free base (ziprasidone) which is prepared as described in column 4, lines 22-43 of United States Patent 5,312,925, referred to above. The free base can also be prepared as described in United States Patent 5,338,846, the disclosure of which is herein incorporated by reference in its entirety. When the intended use is as an injectable formulation, it is preferred to conduct the preparation under pyrogen-free and speck-free conditions. Speck-free solvents and reagents can be prepared by filtering them through a 0.45 μτη Millipore® nylon filter.
Ziprasidone mesylate trihydrate is prepared by mixing the free base with a mixture of water and organic solvent, preferably tetrahydrofuran, at an organic solvent/water ratio (v/v) of about 3:7 to about 27:3 at a temperature ranging from 10°C to 30°C, preferably ambient temperature (about 22-25°C). Preferably, a THF/water
APOy0838
-6ratio of 4:7.5 (v/v per unit of free base) is used. The mixture is then heated to a temperature of about 50°C while stirring. A dilute solution of methanesulfonic acid is then prepared (1:4 w/w acid/water) to provide 1.2 equivalents acid, which is then added slowly, preferably over a 30 to 60 minute period, to the composition that includes the free base. The reaction mixture is then heated to reflux (about 65°C) for about 30 minutes while protected from light. After the mixture has been heated, it is allowed to cool slowly to ambient temperature. While the mixture is cooling, ziprasidone mesylate trihydrate will begin to crystallize out of the mixture. Once the mixture has cooled to ambient temperature, it should be allowed to stir for at least another hour to ensure full crystallization. The trihydrate crystals will appear as large “yellowish hexagonal prismatic crystals. The trihydrate crystals can be filtered from the composition through a poly-cloth filter, and then washed consecutively with appropriate volumes of a THF/water (65/35, v/v) solution and water. When allowed to dry at ambient temperature, the water content of the crystals has a Karl Fischer value ranging from 8.915 10.1% KF (theoretical KF for the trihydrate is 9.6%).
Ziprasidone mesylate trihydrate may be administered orally or parenterally, including intravenously or intramuscularly. For parenteral administration, it is preferred, where the use of water is called for, to use sterile water for injection (SWI). Administration through intramuscular injection is preferred. A preferred composition for intramuscular injection is ziprasidone mesylate trihydrate in combination with sulfoxybutyl /?-cyclodextrin as carrier, preferably prepared at a ratio of 1:10 (w/w) trihydrate to carrier. Compositions containing ziprasidone mesylate trihydrate in combination with sulfoxy /?-cyclodextrin can be prepared as described in co-pending United States provisional applications entitled Method Of Making Inclusion Complexes (Pfizer docket number PC 9563), filed concurrently herewith, and 'Inclusion Complexes Of Aryl-Heterocyclic Compounds (Pfizer docket number PC 8838), filed concurrently herewith. Both of the foregoing co-pending United States provisional applications are incorporated herein by reference in their entirety.
The effective dosage for ziprasidone mesylate trihydrate depends on the intended route of administration, the indication to be treated, and other factors such as age and weight of the subject. In the following dosage ranges, the term mgA refers milligrams of the free base (ziprasidone). A recommended range for oral dosing is 5300 mgA/day, preferably 40-200 mgA/day, more preferably 40-80 mgA/day, in single or
AP/P/ 97/00978
APB 0 0838
-7divided doses. A recommended range for parenteral adiministration, such as injection, is 2.5 mgA/day to 160 mgA/day, and preferably 5-80 mgA/day.
The present invention is illustrated by the following examples, but it is not limited to the details thereof. Unless otherwise indicated, the preparations described in the following examples were conducted under speck-free and pyrogen-free conditions. As used in the following examples, THF means tetrahydrofuran and SWI means sterile water for injection.
Example 1
Purification of 5-f2-f4-(1.2-benzisothiazol-3-yl)-1-Piperazinvl1ethvn-6-chloro10 1,3-dihydro-2H-indol-2-one
To a clean and dry glass-lined tank, 46.8 kg of 5-[2-[4-(1,2-benzisothiazol-3-yl)-1 piperazinyl]ethyl]-6-chloro-1,3-dihydro-2H-indol-2-one and 2816.4 L of THF were charged. The slurry was heated to reflux and held for forty-five minutes to form a hazy solution. The solution was filtered through a 33-inch sparkler precoated with filter aid and backed with a Fuiflo® filter (manufactured by Parker Hannifin Corp., Lebanon, Indiana) to a clean, dry glass-lined tank on a lower level. The filtered solution was concentrated by vacuum distillation, cooled to 5°C, and allowed to stir for two hours. The product was collected by filtration on a centrifuge and washed with cold (0-5°C) THF. The product was collected and dried under vacuum at 45°C, to yield 40.5 kg of product. The product had a purity of 101.5% (within the typical range of 100 ± 2% vs. the standard) as determined by an HPLC assay.
Example 2
5-r2-r4“(1-benzisothiazol-3-y 1)-1-pipe raziny 11 ethy ll-6-chloro-1.3dihydro-2H-indol-2-one methanesulfonate trihydrate
A slurry was produced by charging 1000 g of 5-[2-[4-(1,2-benzisothiazol-3-yl)-1 piperazinyl]ethyl]-6-chloro-1,3-dihydro-2H-indol-2-one, 7500 mL of SWI, and 4000 mL of THF to a 22-lrter, three-neck, round-bottom flask equipped with a heating mantle, an overhead mechanical stirrer, a condenser, and a temperature probe. The flask contents were protected from light with an aluminum foil cover. The slurry was heated to 50°C while stirring. Dilute methanesulfonic acid was prepared by combining 188 mL of methanesulfonic acid with 812 mL SWI. The dilute methanesulfonic acid was added slowly through a dropping funnel to the reaction mixture. The reaction was heated to reflux (about 65°C), and a dark red solution formed as the reaction mixture was heated.
AP/P/ 97/00978
APO00838
-8The reaction mixture was allowed to stir under reflux conditions for approximately thirty minutes. After the thirty minute time period, the heating mantle was shut off to allow slow cooling of the reaction mixture with stirring. The reaction mixture was allowed to cool with stirring overnight (about 18 hours). As the reaction mixture cooled, the product crystallized out as large ‘yellowish* hexagonal prismatic crystals. The mixture was allowed to stir under ambient conditions for one hour. The product was isolated on a Buchner funnel with a poly cloth filter and was washed consecutively with 1500 mL of THF/SWI (65/35, v/v) and 1000 mL of SWl. The crystals were spread over glass trays and allowed to dry under ambient conditions to a Karl Fischer value of about
9.6%. The product was milled through a Mikro-Samplmill® (manufactured by the
Pulverizing Machinery Division of Mikropul Corp., Summit, New Jersey) equipped with a 0.027 H plate at a speed of 14,000 rpm. The yield was 945 g of product.
The products structure was confirmed as 5-(2-(4-(1,2-benzisothiazol-3-yl)-1 piperazinyl]ethyl]-6-chloro-1,3-dihydro-2H-indol-2-one methanesulfonate trihydrate by
NMR. 13C NMR (DMSO-ds): δ 177.1(0), 163.0(0), 153.0(0), 145.0(0), 132.4(0), 129.0(1), 127.8(0), 127.7(1), 127.1(0), 126.5(0), 125.6(1), 124.9 91), 122.1(1), 110.6(1), 55.9(2), 51.7(2), 47.5(2), 40.7(3), 36.2(2), 27.9(2). Ή NMR (DMSO-d6): δ 10.5 (s, 1H); 9.8 (br. s, 1H); 8.2 (d, J=8.2 Hz, 1H); 8.1 (d, J=8.2 Hz, 1H); 7.6 (m, 1H), 7.5 (m, 1H); 7.3 (s, 1H), 6.9 (s, 1H); 4.2 (m, 2H); 3.7 (m, 2H); 3.5 (m, 2H), 3.4 (m, 2H); 3.1 (m, 2H); 2.4 (s,
3H).
Evaluation of the product by HPLC showed a peak with a retention time corresponding to that of a standard. The HPLC conditions are summarized in Tabie 3 below.
AP/P/ 97/00978
Table 3
HPLC Conditions: | |
Column: | Waters - Puresil C-18 15 cm length x 4.6 mm I.D. (Catalog No. WAT044345) |
Mobile phase: | 0.05 M KH2PO4 pH 3.0:methanol (60:40. v/v) |
Flow rate: | 2.0 mL/minute |
Detection: | UV, 229 nm |
Column temperature; | ambient |
Sample volume: | 10pL |
-9Example 3
5-f2-[4-(1,2-benzisothiazol-3-vl)-1 -piperazinvUethvll-S-chloro-l ,3-dihydro-2Hindol-2-one methanesuifonate anhydrous
A slurry was produced by charging 350 g of 5-(2-(4-(1,2-benziosothiazol-3-yl)-1 5 piperazinyl]ethyl]-6-chloro-1,3-dihydro-2H-indol-2-one and 7000 mL of isopropanol to a 12-liter three-neck, round-bottom flask equipped with a heating mantle, an overhead mechanical stirrer, a condenser, and a temperature probe. The slurry was heated to 50°C while stirring. 65.9 mL of methanesulfonic acid was added slowly through a dropping funnel to the 50°C reaction mixture. A slight exotherm to 55°C along with 10 thickening of the slurry and lightening of the slurry color were observed. The reaction was atmospherically distilled to remove 25% of the volume (1750 mL). The slurry was cooled to ambient temperature and allowed to stir overnight. The product was isolated on a sintered glass funnel and washed with fresh isopropanol. The solids were spread over glass trays and allowed to dry under ambient conditions to a Karl Fischer value 15 of 0.5%. The yield was 420.3 g of product. Evaluation of the product by HPLC showed
I a peak with a retention time corresponding to that of a standard. The purity of the product, as determined by HPLC (conditions in Table 3), was 99.8%.
Example 4
542-(4-(1 -benzisothiazol-3-yl)-1 -piperazinvnethyl1-6-chloro-1.320 dihydro-2H-indol-2-one methanesuifonate dihydrate (needle crystals)
A slurry was produced by charging 5 g of 5-(2-(4-(1,2-benzisothiazol-3-yl)-1Q piperazinyl]ethyl]-6-chloro-1,3-dihydro-2H-indol-2-one, 37.5 mL of water, and 20 mL of
THF to a 150 mL, three-neck, round-bottom flask equipped with a heating mantle, an overhead mechanical stirrer, a condenser, and a temperature probe. The flask contents were protected from light with an aluminum foil cover. The slurry was heated to 65°C with stirring. Dilute methanesulfonic acid was prepared by combining 1 mL of methanesulfonic acid with 4 mL SWI. The dilute methanesulfonic acid was added slowly through a dropping funnel to the reaction mixture. The reaction was heated to reflux (about 65°C) and a dark red solution formed. The reaction mixture was allowed to stir under reflux conditions for approximately thirty minutes. After the thirty minute period, a seed crystal of the needle shaped polymorph was added to the reaction solution. Crystal formation started, and the heat was removed to allow slow cooling of the reaction with stirring. During cooling at 50°C, a thick pinkish slurry was observed
AP/P/ 9 7 / 0 0 9 78 ΑΡθ00838
-10in the flask. Water (20 mL) was added to the flask to thin the slurry. The product was allowed to stir under ambient conditions for one hour. The product was isolated on a Buchner funnel with a paper filter and the solids were allowed to dry under ambient conditions to a Karl Fischer value of about 6.6%. The yield was 6.03 g of product. The purity of the product, as determined by HPLC (conditions in Table 3), was 99.8%. Example 5
5-f2-f4-(1-benzisothiazol-3-vl)-1-piperazinvnethvn-€-chloro-1,3dihydro-2H-indol-2-one methanesulfonate dihydrate (lath crystals)
A slurry was produced by charging 25 g of 5-[2-[4-(1,2-benzisothiazol-3-yl)-110 piperazinyl]ethyl]-6-chloro-1,3-dihydro-2H-indol-2-one and 375 mL of water to a 500 mL, three-neck, round-bottom flask equipped with a heating mantle, an overhead mechanical stirrer, a condenser, and a temperature probe. The flask contents were protected from light with an aluminum foil cover. The slurry was heated to 50-55°C while stirring. Methanesulfonic acid (5 mL) was added slowly through a dropping funnel to the reaction mixture. Thickening of the slurry and lightening of the slurry color were observed. The reaction was heated to reflux (about 100°C) and allowed to stir for about one hour. The heat was removed to allow slow cooling of the reaction with stirring. The reaction solution was allowed to stir under ambient conditions for about one hour. The product was isolated on a Buchner funnel with a paper filter and the solids were allowed to dry under ambient conditions to a Karl Fischer value of about 6.2%. The yield was 32.11 g of product. The purity of the product, as determined by HPLC (conditions in Table 3), was 98.7%.
Claims (7)
1. 5-(
2-(4-(1,2-benzisothiazol-3-yl)-1 -piperazinyl)ethyl)-6-chloro-1,3-dihydro2H-indol-2-one mesylate trihydrate.
5 2. A pharmaceutical composition for the treatment of a psychotic disorder comprising an amount of the compound of claim 1 that is effective in the treatment of said psychotic disorder and a pharmaceutically acceptable carrier.
3. A method of treating a psychotic disorder in a mammal comprising administering to said mammal an amount of the compound of claim 1 that is effective
10 in the treatment of said psychotic disorder.
4. The method of claim 3 wherein said psychotic disorder is schizophrenia, migraine pain or anxiety.
5. The method of claim 3 wherein said pyschotic disorder is schizophrenia.
6. The method of claim 3 wherein said administration is parenteral
15 administration.
7. The method of claim 6 wherein said parenteral administration is intramuscular injection.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1653796P | 1996-05-07 | 1996-05-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
AP9700978A0 AP9700978A0 (en) | 1997-07-31 |
AP838A true AP838A (en) | 2000-05-03 |
Family
ID=21777622
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
APAP/P/1997/000978A AP838A (en) | 1996-05-07 | 1997-04-30 | Mesylate trihydrate salts of 5-(2-(4-(1,2-benzisothiazol-3-y1)-1-piperaziny1)-ethy1) -6-chloro-1,3-dihydro-2h-indol-2-one. |
Country Status (46)
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
HN1996000101A (en) * | 1996-02-28 | 1997-06-26 | Inc Pfizer | COMBINED THERAPY FOR OSTEOPOROSIS |
TW491847B (en) | 1996-05-07 | 2002-06-21 | Pfizer | Mesylate dihydrate salts of 5-(2-(4-(1,2-benzisothiazol-3-yl)-1-piperazinyl)-ethyl)-6-chloro-1,3-dihydro-2h-indol-2-one |
UA57734C2 (en) | 1996-05-07 | 2003-07-15 | Пфайзер Інк. | Arylheterocyclic inclusion complexes |
IL127497A (en) * | 1997-12-18 | 2002-07-25 | Pfizer Prod Inc | Pharmaceutical compositions containing piperazinyl-heterocyclic compounds for treating psychiatric disorders |
DE69910706T2 (en) * | 1998-05-26 | 2004-07-08 | Pfizer Products Inc., Groton | Drug used to treat glaucoma and ischemic retinopathy |
US20080113025A1 (en) * | 1998-11-02 | 2008-05-15 | Elan Pharma International Limited | Compositions comprising nanoparticulate naproxen and controlled release hydrocodone |
JP2003518485A (en) | 1999-12-23 | 2003-06-10 | ファイザー・プロダクツ・インク | Pharmaceutical composition giving improved drug concentration |
PL365576A1 (en) * | 2000-06-02 | 2005-01-10 | Pfizer Products Inc. | S-methyl-dihydro-ziprasidone for treatment of psychiatric and ocular disorders |
US7053092B2 (en) | 2001-01-29 | 2006-05-30 | Otsuka Pharmaceutical Co., Ltd. | 5-HT1a receptor subtype agonist |
AR032641A1 (en) * | 2001-01-29 | 2003-11-19 | Otsuka Pharma Co Ltd | RECEIVER SUBTIPE AGONIST 5-HT 1A. |
US8703772B2 (en) | 2001-09-25 | 2014-04-22 | Otsuka Pharmaceutical Co., Ltd. | Low hygroscopic aripiprazole drug substance and processes for the preparation thereof |
AR033485A1 (en) | 2001-09-25 | 2003-12-26 | Otsuka Pharma Co Ltd | MEDICINAL SUBSTANCE OF ARIPIPRAZOL OF LOW HYGROSCOPICITY AND PROCESS FOR THE PREPARATION OF THE SAME |
US20040048876A1 (en) * | 2002-02-20 | 2004-03-11 | Pfizer Inc. | Ziprasidone composition and synthetic controls |
UY27668A1 (en) * | 2002-02-20 | 2003-10-31 | Pfizer Prod Inc | ZIPRASIDONE COMPOSITION AND SYNTHETIC CONTROLS |
AU2003300814A1 (en) | 2002-12-04 | 2004-06-23 | Dr. Reddy's Laboratories Inc. | Polymorphic forms of ziprasidone and its hydrochloride |
WO2004050655A1 (en) * | 2002-12-04 | 2004-06-17 | Dr. Reddy's Laboratories Limited | Polymorphic forms of ziprasidone and its hydrochloride |
BRPI0410419A (en) * | 2003-05-16 | 2006-05-30 | Pfizer Prod Inc | ziprasidone anxiety treatment |
CA2525323A1 (en) * | 2003-05-16 | 2004-11-25 | Pfizer Products Inc. | Method for enhancing cognition using ziprasidone |
WO2004100954A1 (en) * | 2003-05-16 | 2004-11-25 | Pfizer Products Inc. | Treatment of psychotic and depressive disorders |
US7678799B2 (en) * | 2003-06-03 | 2010-03-16 | Teva Pharmaceutical Industries Ltd. | Crystalline ziprasidone HCl and processes for preparation thereof |
AR046811A1 (en) * | 2003-09-02 | 2005-12-28 | Imran Ahmed | ORAL DOSAGE FORMS OF ZIPRASIDONE OF SUSTAINED LIBERATION |
US7667037B2 (en) * | 2003-10-24 | 2010-02-23 | Teva Pharmaceutical Industries Ltd. | Processes for preparation of ziprasidone |
US20050197347A1 (en) * | 2003-12-18 | 2005-09-08 | Judith Aronhime | Polymorphic form B2 of ziprasidone base |
WO2005065660A2 (en) * | 2003-12-31 | 2005-07-21 | Alpharma, Inc. | Ziprasidone formulations |
ES2334800T3 (en) * | 2004-02-27 | 2010-03-16 | Ranbaxy Laboratories Limited | PROCESS FOR PREPARATION OF ZIPRASIDONA. |
US9044503B2 (en) * | 2004-08-27 | 2015-06-02 | University Of Kentucky Research Foundation | Amyloid peptide inactivating enzyme to treat alzheimer's disease peripherally |
ES2250001B1 (en) * | 2004-09-29 | 2007-06-01 | Medichem, S.A. | PROCESS FOR THE PURIFICATION OF ZIPRASIDONA. |
US7777037B2 (en) * | 2004-10-27 | 2010-08-17 | Dr. Reddy's Laboratories Limited | Ziprasidone process |
US7910577B2 (en) * | 2004-11-16 | 2011-03-22 | Elan Pharma International Limited | Injectable nanoparticulate olanzapine formulations |
CA2593497A1 (en) * | 2005-02-11 | 2006-08-17 | Judith Aronhime | Amorphous ziprasidone mesylate |
WO2006096462A1 (en) * | 2005-03-03 | 2006-09-14 | Elan Pharma International Limited | Nanoparticulate compositions of heterocyclic amide derivatives |
ITMI20050346A1 (en) | 2005-03-07 | 2006-09-08 | Dipharma Spa | SOLID FORM OF CHLORIDATED ZIPRASIDONE |
WO2006098834A2 (en) * | 2005-03-14 | 2006-09-21 | Teva Pharmaceutical Industries Ltd. | Crystalline forms of ziprasidone mesylate |
EP1858892A1 (en) * | 2005-03-14 | 2007-11-28 | Teva Pharmaceutical Industries Ltd | Anhydrous ziprasidone mesylate and a process for its preparation |
CA2683276A1 (en) * | 2007-05-18 | 2008-11-27 | Scidose Llc | Ziprasidone formulations |
KR100948126B1 (en) * | 2007-12-10 | 2010-03-18 | 씨제이제일제당 (주) | Crystalline ziprasidone sulfonate, preparation method thereof, and pharmaceutical composition comprising the same |
CN102234273B (en) * | 2010-04-21 | 2015-08-05 | 上海医药工业研究院 | Ziprasidone mesylate semihydrate and preparation method thereof |
SI23610A (en) | 2011-01-13 | 2012-07-31 | Diagen@d@o@o | New addition salts of ziprasidone, process for their preparation and their use in therapy |
US20140206667A1 (en) | 2012-11-14 | 2014-07-24 | Michela Gallagher | Methods and compositions for treating schizophrenia |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0281309A1 (en) * | 1987-03-02 | 1988-09-07 | Pfizer Inc. | Piperazinyl-heterocyclic compounds |
EP0584903A1 (en) * | 1992-08-26 | 1994-03-02 | Pfizer Inc. | Process for preparing aryl piperazinyl-heterocyclic compounds |
EP0586191A1 (en) * | 1992-09-01 | 1994-03-09 | Pfizer Inc. | Monohydrate of 5-(2-(4-(1,2 Benzisothiazol-3-YL)-1-Piperazinyl)-Ethyl)-6-Chloro-1,3-Dihydro-2H-indol-2-one Hydrochloride |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5359068A (en) * | 1993-06-28 | 1994-10-25 | Pfizer Inc. | Processes and intermediates for the preparation of 5-[2-(4-(benzoisothiazol-3-yl)-piperazin-1-yl)ethyl]-6-chloro-1,3-dihydro-indol-2-one |
-
1997
- 1997-03-26 EA EA199800909A patent/EA001180B1/en not_active IP Right Cessation
- 1997-03-26 CZ CZ19983494A patent/CZ289216B6/en not_active IP Right Cessation
- 1997-03-26 NZ NZ332219A patent/NZ332219A/en not_active IP Right Cessation
- 1997-03-26 BR BR9708932A patent/BR9708932A/en not_active IP Right Cessation
- 1997-03-26 AU AU19368/97A patent/AU730856C/en not_active Expired
- 1997-03-26 SK SK1505-98A patent/SK282674B6/en not_active IP Right Cessation
- 1997-03-26 TR TR1998/02241T patent/TR199802241T2/xx unknown
- 1997-03-26 AT AT97907237T patent/ATE236902T1/en active
- 1997-03-26 IL IL12659097A patent/IL126590A/en not_active IP Right Cessation
- 1997-03-26 JP JP09539668A patent/JP3102896B2/en not_active Expired - Lifetime
- 1997-03-26 SI SI9730526T patent/SI0904273T1/en unknown
- 1997-03-26 HU HU9902808A patent/HU229057B1/en unknown
- 1997-03-26 CN CN97194243A patent/CN1092658C/en not_active Expired - Lifetime
- 1997-03-26 NZ NZ508303A patent/NZ508303A/en not_active IP Right Cessation
- 1997-03-26 ES ES97907237T patent/ES2192264T3/en not_active Expired - Lifetime
- 1997-03-26 UA UA98105559A patent/UA47467C2/en unknown
- 1997-03-26 PL PL97329880A patent/PL188164B1/en unknown
- 1997-03-26 WO PCT/IB1997/000306 patent/WO1997042190A1/en active IP Right Grant
- 1997-03-26 EP EP97907237A patent/EP0904273B1/en not_active Expired - Lifetime
- 1997-03-26 CA CA002252895A patent/CA2252895C/en not_active Expired - Lifetime
- 1997-03-26 KR KR1019980708958A patent/KR100333214B1/en not_active IP Right Cessation
- 1997-03-26 US US09/180,456 patent/US6110918A/en not_active Expired - Lifetime
- 1997-03-26 DK DK97907237T patent/DK0904273T3/en active
- 1997-03-26 DE DE69720719T patent/DE69720719T2/en not_active Expired - Lifetime
- 1997-03-26 PT PT97907237T patent/PT904273E/en unknown
- 1997-04-01 TW TW086104175A patent/TW427989B/en not_active IP Right Cessation
- 1997-04-02 HN HN1997000040A patent/HN1997000040A/en unknown
- 1997-04-10 GT GT199700042A patent/GT199700042A/en unknown
- 1997-04-28 CO CO97022512A patent/CO4940465A1/en unknown
- 1997-04-30 AP APAP/P/1997/000978A patent/AP838A/en active
- 1997-05-04 EG EG37797A patent/EG24401A/en active
- 1997-05-05 ID IDP971490A patent/ID17504A/en unknown
- 1997-05-05 AR ARP970101855A patent/AR007003A1/en unknown
- 1997-05-06 ZA ZA973875A patent/ZA973875B/en unknown
- 1997-05-06 MA MA24594A patent/MA26427A1/en unknown
- 1997-05-06 MY MYPI97001988A patent/MY128051A/en unknown
- 1997-05-06 YU YU17397A patent/YU49398B/en unknown
- 1997-05-06 UY UY24543A patent/UY24543A1/en not_active IP Right Cessation
- 1997-05-06 DZ DZ970068A patent/DZ2221A1/en active
- 1997-05-06 ME MEP-1997-173A patent/ME00901B/en unknown
- 1997-05-06 TN TNTNSN97073A patent/TNSN97073A1/en unknown
- 1997-05-07 HR HR970235A patent/HRP970235B1/en not_active IP Right Cessation
-
1998
- 1998-10-23 IS IS4878A patent/IS2301B/en unknown
- 1998-10-30 OA OA9800205A patent/OA10908A/en unknown
- 1998-11-03 BG BG102893A patent/BG63601B1/en unknown
- 1998-11-06 NO NO19985193A patent/NO312513B1/en not_active IP Right Cessation
-
1999
- 1999-07-12 HK HK99102956A patent/HK1017893A1/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0281309A1 (en) * | 1987-03-02 | 1988-09-07 | Pfizer Inc. | Piperazinyl-heterocyclic compounds |
EP0584903A1 (en) * | 1992-08-26 | 1994-03-02 | Pfizer Inc. | Process for preparing aryl piperazinyl-heterocyclic compounds |
EP0586191A1 (en) * | 1992-09-01 | 1994-03-09 | Pfizer Inc. | Monohydrate of 5-(2-(4-(1,2 Benzisothiazol-3-YL)-1-Piperazinyl)-Ethyl)-6-Chloro-1,3-Dihydro-2H-indol-2-one Hydrochloride |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AP838A (en) | Mesylate trihydrate salts of 5-(2-(4-(1,2-benzisothiazol-3-y1)-1-piperaziny1)-ethy1) -6-chloro-1,3-dihydro-2h-indol-2-one. | |
AP765A (en) | Ziprasidone mesylate dihydrates and its uses as dopamine D2 atagonists. | |
NZ508304A (en) | Mesylate dihydrate salt of 5-(2-(4-(1,2 benzisothiazol-3-yl)-1-piperazinyl)ethyl)-6-chloro-1,3-dihydro-2(1H)-indol-2-one ( ziprasidone) useful as dopamine D2 antagonist | |
MXPA98009242A (en) | Salt mesylate trihydrate 5 - (- 2- (4- (1,2-benzoisotiazol-3-il) -1-piperazinil) ethyl) -6-chlorine-1,3-dihydro-2h-indol-2- |