This site is supported by donations to The OEIS Foundation.
Index of Fibonacci Numbers and Variants
From OeisWiki
There are many sequences dealing with Fibonacci numbers and n-bonacci numbers. Those related to prime terms are summarized here.
Fn |
Fn = Fn − 1 + Fn − 2 |
F1 = 1 |
See A000045 for an extensive list of references, links, formulas and cross references.
Variants of the Fibonacci numbers utilize a larger set of starting terms and differing initial values.
The offset to these sequences are somewhat arbitrary, most use zero, some use one and others use the first non-zero term.
The table below summarizes sequences in the OEIS related to prime terms of the Fibonacci numbers and variants.
Related Sequences
Column headings in the table below: order number of terms summed for next term seeds starting value of terms offset index of first term name name of Fibonacci variant sequence A-number of sequence indices A-number of sequence listing indices of primes primes A-number of sequence listing primes
order | seeds | offset | name | sequence | indices of primes |
primes |
---|---|---|---|---|---|---|
2 | 0,1 | 0 | Fibonacci | A000045 | A001605 | A005478 |
3 | 0,0,1 | 0 | Tribonacci | A000073 | A092835 | A092836 |
3 | 0,2,1 | 0 | Tribonacci | A020992 | A233554 | A232498 |
3 | 1,1,0 | 0 | Tribonacci | A081172 | A235396 | A214752 |
3 | 1,1,1 | 0 | Tribonacci | A000213 | A157611 | A056816 |
3 | 1,2,2 | 0 | Tribonacci | A214727 | A234696 | A234703 |
3 | 1,3,3 | 0 | Tribonacci | A214825 | A230016 | A230017 |
3 | 1,4,4 | 0 | Tribonacci | A214826 | A242315 | A242316 |
3 | 1,5,5 | 0 | Tribonacci | A214827 | A242324 | A242325 |
3 | 1,6,6 | 0 | Tribonacci | A214828 | A242572 | A242576 |
3 | 1,7,7 | 0 | Tribonacci | A214829 | A243622 | A243623 |
3 | 1,8,8 | 0 | Tribonacci | A214830 | A244001 | A244002 |
3 | 1,9,9 | 0 | Tribonacci | A214831 | A244930 | A244931 |
3 | 2,1,1 | 0 | Tribonacci | A141036 | A246517 | A246518 |
3 | 2,1,2 | 0 | Tribonacci | A214899 | A233190 | A230607 |
3 | 2,4,8 | 0 | Tribonacci | A135491 | ||
3 | 3,1,1 | 0 | Tribonacci | A141523 | A235862 | A235873 |
4 | 0,0,0,1 | 0 | Tetranacci | A000078 | A104534 | |
4 | 0,0,1,0 | 0 | Tetranacci | A001631 | A247027 | A247028 |
4 | 0,0,1,2 | 0 | Tetranacci | A001630 | A241660 | A241661 |
4 | 1,1,1,1 | 0 | Tetranacci | A000288 | A247561 | A247946 |
5 | 0,0,0,0,1 | 0 | Pentanacci | A001591 | A248757 | A105757 |
5 | 1,1,1,1,1 | 0 | Pentanacci | A000322 | A248920 | A248921 |
6 | 0,0,0,0,0,1 | 0 | Hexanacci | A001592 | A249635 | A105759 |
6 | 1,1,1,1,1,1 | 0 | Hexanacci | A000383 | A247192 | A249413 |
7 | 0,0,0,0,0,0,1 | 0 | Heptanacci | A122189 | A248700 | A105761 |
7 | 1,1,1,1,1,1,1 | 0 | Heptanacci | A060455 | A253318 | A253333 |
8 | 0,0,0,0,0,0,0,1 | 0 | Octanacci | A079262 | A253705 | A253706 |
8 | 1,1,1,1,1,1,1,1 | 1 | Octanacci | A123526 | A254412 | A254413 |
9 | 0,0,0,0,0,0,0,0,1 | 0 | Nonanacci | A104144 | A255529 | |
9 | 0,0,0,0,0,0,0,1,0 | 0 | Nonanacci | A251746 | A255530 | |
9 | 0,0,0,0,0,0,1,0,0 | 0 | Nonanacci | A251747 | A255531 | |
9 | 0,0,0,0,0,1,0,0,0 | 0 | Nonanacci | A251748 | ||
9 | 0,0,0,0,1,0,0,0,0 | 0 | Nonanacci | A251749 | A255532 | |
9 | 0,0,0,1,0,0,0,0,0 | 0 | Nonanacci | A251750 | A255533 | |
9 | 0,0,1,0,0,0,0,0,0 | 0 | Nonanacci | A251751 | A255534 | |
9 | 0,1,0,0,0,0,0,0,0 | 0 | Nonanacci | A251752 | A255536 | |
9 | 1,1,1,1,1,1,1,1,1 | 1 | Nonanacci | A127193 | A256498 | A256499 |
10 | 1,1,1,1,1,1,1,1,1,1 | 1 | 10-step | A127194 | A257073 | A257074 |
10 | 0,0,0,0,0,0,0,0,0,1 | 0 | 10-step | A122265 | A257277 | A257278 |
11 | 1,1,1,1,1,1,1,1,1,1,1 | 1 | 11-step | A127624 | A257966 | A257967 |
Similar Sequences
Padovan sequence (A000931): start={1,0,0}; offset=0; a(n)=a(n-2)+a(n-3)
Links
- E. S. Croot, [1], Notes on Linear Recurrence Sequences.
- M. A. Lerma, [2], Recurrence Relations.
- Tony D. Noe and Jonathan Vos Post, [3], J. of Integer Sequences, Vol. 8 (2005), Article 05.4.4.
- Weisstein, Eric W., Fibonacci Number, from MathWorld—A Wolfram Web Resource.
- Weisstein, Eric W., Fibonacci n-Step Number, from MathWorld—A Wolfram Web Resource.