[go: up one dir, main page]

login
Search: a372321 -id:a372321
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of e.g.f. exp( x - LambertW(-2*x)/2 ).
+10
4
1, 2, 8, 68, 960, 18832, 471136, 14324480, 512733696, 21119803136, 984029612544, 51169331031040, 2937675286583296, 184560174104465408, 12594824112085327872, 927757127285523243008, 73369903633161123397632, 6200198958236463387836416
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = Sum_{k=0..n} (2*k+1)^(k-1) * binomial(n,k).
G.f.: Sum_{k>=0} (2*k+1)^(k-1) * x^k / (1-x)^(k+1).
a(n) ~ 2^(n-1) * n^(n-1) * exp((exp(-1) + 1)/2). - Vaclav Kotesovec, May 04 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-2*x)/2)))
(PARI) a(n) = sum(k=0, n, (2*k+1)^(k-1)*binomial(n, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 27 2024
STATUS
approved
Expansion of e.g.f. exp( x - LambertW(-3*x)/3 ).
+10
4
1, 2, 10, 125, 2644, 77597, 2904382, 132169403, 7083715240, 437031850841, 30506442905194, 2377038378159359, 204521399708464252, 19259006462435865413, 1970114326513629358654, 217556451608123850352523, 25794252755430105917806288, 3268152272130255473300883377
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = Sum_{k=0..n} (3*k+1)^(k-1) * binomial(n,k).
G.f.: Sum_{k>=0} (3*k+1)^(k-1) * x^k / (1-x)^(k+1).
a(n) ~ 3^(n-1) * n^(n-1) * exp((exp(-1) + 1)/3). - Vaclav Kotesovec, May 04 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-3*x)/3)))
(PARI) a(n) = sum(k=0, n, (3*k+1)^(k-1)*binomial(n, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Apr 27 2024
STATUS
approved
Expansion of e.g.f. -exp( x + LambertW(-2*x)/2 ).
+10
3
-1, 0, 4, 36, 464, 8560, 206112, 6104896, 214376192, 8701657344, 400748710400, 20642974511104, 1175888936749056, 73389707156586496, 4980134850525986816, 365062349226075463680, 28747688571714736160768, 2420266280392895064506368
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = Sum_{k=0..n} (2*k-1)^(k-1) * binomial(n,k).
G.f.: Sum_{k>=0} (2*k-1)^(k-1) * x^k / (1-x)^(k+1).
a(n) ~ 2^(n-1) * n^(n-1) * exp((exp(-1) - 1)/2). - Vaclav Kotesovec, May 06 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-exp(x+lambertw(-2*x)/2)))
(PARI) a(n) = sum(k=0, n, (2*k-1)^(k-1)*binomial(n, k));
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 27 2024
STATUS
approved

Search completed in 0.010 seconds