[go: up one dir, main page]

login
A372321
Expansion of e.g.f. -exp( x + LambertW(-3*x)/3 ).
3
-1, 0, 6, 81, 1620, 45765, 1671678, 74794671, 3958829640, 241898775273, 16756621904970, 1297547591499819, 111065107263415308, 10412999996499836541, 1061234184094567585326, 116812280111404106348415, 13810631408232372091755792, 1745470697932523785587735249
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
a(n) = Sum_{k=0..n} (3*k-1)^(k-1) * binomial(n,k).
G.f.: Sum_{k>=0} (3*k-1)^(k-1) * x^k / (1-x)^(k+1).
a(n) ~ 3^(n-1) * n^(n-1) * exp((exp(-1) - 1)/3). - Vaclav Kotesovec, May 06 2024
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(-exp(x+lambertw(-3*x)/3)))
(PARI) a(n) = sum(k=0, n, (3*k-1)^(k-1)*binomial(n, k));
CROSSREFS
KEYWORD
sign
AUTHOR
Seiichi Manyama, Apr 27 2024
STATUS
approved