Displaying 1-7 of 7 results found.
page
1
Numbers whose maximal exponent in their prime factorization is a power of 2.
+10
9
2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77
COMMENTS
First differs from its subsequence A138302 \ {1} at n = 378: a(378) = 432 = 2^4 * 3^3 is not a term of A138302.
Numbers k such that A051903(k) is a power of 2.
The asymptotic density of this sequence is 1/zeta(3) + Sum_{k>=2} (1/zeta(2^k+1) - 1/zeta(2^k)) = 0.87442038669659566330... .
MATHEMATICA
pow2Q[n_] := n == 2^IntegerExponent[n, 2];
Select[Range[2, 100], pow2Q[Max[FactorInteger[#][[;; , 2]]]] &]
Select[Range[2, 80], IntegerQ[Log2[Max[FactorInteger[#][[;; , 2]]]]]&] (* Harvey P. Dale, Nov 06 2024 *)
PROG
(PARI) ispow2(n) = n >> valuation(n, 2) == 1;
is(n) = n > 1 && ispow2(vecmax(factor(n)[, 2]));
Numbers whose maximal exponent in their prime factorization is square.
+10
8
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102
COMMENTS
Numbers k such that A051903(k) is square.
The asymptotic density of this sequence is 1/zeta(2) + Sum_{k>=2} (1/zeta(k^2+1) - 1/zeta(k^2)) = 0.64939447949574562687... .
MATHEMATICA
Select[Range[100], IntegerQ@ Sqrt[Max[FactorInteger[#][[;; , 2]]]] &]
PROG
(PARI) lista(kmax) = for(k = 1, kmax, if(k == 1 || issquare(vecmax(factor(k)[, 2])), print1(k, ", ")));
Numbers whose maximum exponent in their prime factorization is an evil number ( A001969).
+10
5
8, 24, 27, 32, 40, 54, 56, 64, 72, 88, 96, 104, 108, 120, 125, 135, 136, 152, 160, 168, 184, 189, 192, 200, 216, 224, 232, 243, 248, 250, 264, 270, 280, 288, 296, 297, 312, 320, 328, 343, 344, 351, 352, 360, 375, 376, 378, 392, 408, 416, 424, 440, 448, 456, 459
COMMENTS
The asymptotic density of this sequence is Sum_{k in A001969} (1/zeta(k+1) - 1/zeta(k)) = 0.12101890210392912747... .
MATHEMATICA
evilQ[n_] := EvenQ[DigitCount[n, 2, 1]]; q[n_] := evilQ[Max[FactorInteger[n][[;; , 2]]]]; Select[Range[500], q]
PROG
(PARI) is(n) = n > 1 && !(hammingweight(vecmax(factor(n)[, 2])) % 2);
Numbers whose maximum exponent in their prime factorization is a composite number.
+10
3
16, 48, 64, 80, 81, 112, 144, 162, 176, 192, 208, 240, 256, 272, 304, 320, 324, 336, 368, 400, 405, 432, 448, 464, 496, 512, 528, 560, 567, 576, 592, 624, 625, 648, 656, 688, 704, 720, 729, 752, 768, 784, 810, 816, 832, 848, 880, 891, 912, 944, 960, 976, 1008
COMMENTS
Subsequence of A322448 and first differs from it at n = 138: A322448(138) = 2592 = 2^5 * 3^4 is not a term of this sequence.
The asymptotic density of this sequence is d = Sum_{k composite} (1/zeta(k+1) - 1/zeta(k)) = 0.05296279266796920306... . The asymptotic density of this sequence within the nonsquarefree numbers ( A013929) is d / (1 - 1/zeta(2)) = 0.13508404411123191108... .
MAPLE
filter:= proc(n) local m;
m:= max(ifactors(n)[2][.., 2]);
m > 1 and not isprime(m)
end proc:
MATHEMATICA
Select[Range[1200], CompositeQ[Max[FactorInteger[#][[;; , 2]]]] &]
PROG
(PARI) iscomposite(n) = n > 1 && !isprime(n);
is(n) = n > 1 && iscomposite(vecmax(factor(n)[, 2]));
Numbers whose maximum exponent in their prime factorization is a powerful number larger than 1.
+10
3
16, 48, 80, 81, 112, 144, 162, 176, 208, 240, 256, 272, 304, 324, 336, 368, 400, 405, 432, 464, 496, 512, 528, 560, 567, 592, 624, 625, 648, 656, 688, 720, 752, 768, 784, 810, 816, 848, 880, 891, 912, 944, 976, 1008, 1040, 1053, 1072, 1104, 1134, 1136, 1168, 1200
COMMENTS
Subsequence of A130897 and first differs from it at n = 115: A130897(115) = 2592 = 2^5 * 3^4 is not a term of this sequence.
The asymptotic density of this sequence is d = Sum_{k > 1 and in A001694} (1/zeta(k+1) - 1/zeta(k)) = 0.043523813088759413253... . The asymptotic density of this sequence within A130897 is d/(1 - A262276) = 0.98744988886705430331... .
MATHEMATICA
powQ[n_] := Min[FactorInteger[n][[;; , 2]]] > 1; q[n_] := powQ[Max[ FactorInteger[n][[;; , 2]] ]]; Select[Range[1200], q]
PROG
(PARI) ispow(n) = n > 1 && ispowerful(n);
is(n) = n > 1 && ispow(vecmax(factor(n)[, 2]))
The maximum exponent in the prime factorization of the numbers whose maximum exponent in their prime factorization is a Fibonacci number.
+10
3
0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 5, 1, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1
COMMENTS
First differs from A375766 at n = 2448.
All the terms are Fibonacci numbers by definition.
FORMULA
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (1/zeta(2) + Sum_{k>=3} (Fibonacci(k) * (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k)))) / d = 1.52660290991620063268..., where d = 1/zeta(4) + Sum_{k>=5} (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k))) = 0.94462177878047854647... is the density of A369939.
MATHEMATICA
fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]; s[n_] := Module[{e = Max[FactorInteger[n][[;; , 2]]]}, If[fibQ[e], e, Nothing]]; s[1] = 0; Array[s, 100]
PROG
(PARI) isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4);
lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = vecmax(factor(k)[, 2]); if(isfib(e), print1(e, ", "))); }
The indices of the terms of A375768 in the Fibonacci sequence.
+10
3
0, 2, 2, 3, 2, 2, 2, 4, 3, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 4, 3, 2, 4, 3, 2, 2, 2, 5, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 2, 3, 3, 2, 2, 3, 3, 2, 3, 2, 4, 2, 4, 2, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 2, 2, 3, 3, 2, 2, 2, 2, 2, 3, 2, 2, 2, 4, 2, 3, 2, 3, 2, 2, 2, 5, 2, 3, 3, 3, 2, 2, 2, 4, 2, 2, 2, 4, 2, 2
COMMENTS
First differs from A375767 at n = 2448.
Since 1 appears twice in the Fibonacci sequence (1 = Fibonacci(1) = Fibonacci(2)), its index here is chosen to be 2.
FORMULA
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = (2/zeta(2) + Sum_{k>=3} (k * (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k)))) / d = 2.4999593748274972257073..., where d = 1/zeta(4) + Sum_{k>=5} (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k))) = 0.94462177878047854647... is the density of A369939.
If the chosen index for 1 is 1 instead of 2, then the asymptotic mean is (1/zeta(2) + Sum_{k>=3} (k * (1/zeta(Fibonacci(k)+1) - 1/zeta(Fibonacci(k)))) / d = 1.85639269500896710302009... .
MATHEMATICA
fibQ[n_] := Or @@ IntegerQ /@ Sqrt[5*n^2 + {-4, 4}]; A130233[n_] := Module[{k = 2}, While[Fibonacci[k] <= n, k++]; k-1]; s[n_] := Module[{e = Max[FactorInteger[n][[;; , 2]]]}, If[fibQ[e], A130233[e], Nothing]]; s[1] = 0; Array[s, 100]
PROG
(PARI) isfib(n) = issquare(5*n^2 - 4) || issquare(5*n^2 + 4);
A130233(n) = {my(k = 2); while(fibonacci(k) <= n, k++); k-1; }
lista(kmax) = {my(e); print1(0, ", "); for(k = 2, kmax, e = vecmax(factor(k)[, 2]); if(isfib(e), print1( A130233(e), ", "))); }
Search completed in 0.009 seconds
|