[go: up one dir, main page]

login
A337052
Numbers k such that the powerful part of k has an even number of prime divisors counted with multiplicity.
3
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76
OFFSET
1,2
COMMENTS
Numbers k such that A001222(A057521(k)) == 0 (mod 2).
Numbers k such that A057521(k) is in A028260.
Differs from A096432 by having the additional terms 1 and 216, 256, 768, 864, ... and not having the terms 432, 648, ...
First differs from both A220218 and A335275 at n = 193: a(193) = 216 is not a term of these two sequences.
Cohen (1964) proved that this sequence has an asymptotic density, and gave the value 1/2 + (1/5) * Product_{p prime} (1 + (p^2 + p + 1)/(p^3 * (p + 1))) = 0.8172707179... But the numbers of terms not exceeding 10^k for k = 1, 2, ... are 9, 90, 885, 8849, 88499, 884993, 8849889, 88498711, 884987643, 8849876178, ... indicating that the asymptotic density is about 0.88498...
LINKS
Eckford Cohen, Some asymptotic formulas in the theory of numbers, Trans. Amer. Math. Soc., Vol. 112, No. 2 (1964), pp. 214-227. See corollary 4.2.2, pp. 226-227.
EXAMPLE
2 is a term since the powerful part of 2 is 1, which has 0 prime divisors, and 0 is even.
MATHEMATICA
Select[Range[100], EvenQ @ Total @ Select[FactorInteger[#][[;; , 2]], #1 > 1 &] &]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Aug 12 2020
STATUS
approved