[go: up one dir, main page]

login
Search: a367117 -id:a367117
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of regions in an equilateral triangular figure formed by the straight line segments connecting all vertices and all points that divide the sides into n equal parts.
+10
62
1, 12, 75, 252, 715, 1572, 3109, 5676, 9291, 14556, 22081, 32502, 44935, 62868, 83286, 108384, 140152, 181710, 225565, 282978, 342792, 415614, 502318, 606642, 708505, 839874, 983007, 1141416, 1315102, 1529526, 1733476, 1994550, 2259420, 2559990, 2878053, 3237414, 3593521, 4047906, 4510590, 5002350, 5506918, 6128100, 6704800, 7414518, 8113992, 8858622, 9682927, 10626774, 11478142, 12519492
OFFSET
1,2
FORMULA
By the Euler characteristic, a(n) = A274586(n) - A274585(n) + 1 = A274586(n) - A092866(n) - 3n - 1.
EXAMPLE
a(2)=12 because the 6 line segments mutually connecting the vertices and the mid-side nodes form 12 congruent right triangles of two different sizes.
a(3)=75: 48 triangles, 24 quadrilaterals and 3 pentagons are formed. See pictures at Pfoertner link.
CROSSREFS
Cf. A092866 (number of intersections), A274585 (number of points both inside and on the triangle sides), A274586 (number of edges), A331911 (number of n-gons).
Cf. A092098 (regions in triangle cut by line segments connecting vertices with subdivision points on opposite side), A006533 (regions formed by all diagonals in regular n-gon), A002717 (triangles in triangular matchstick arrangement).
If the boundary points are in general position, we get A367117, A213827, A367118, A367119. - N. J. A. Sloane, Nov 09 2023
KEYWORD
more,nonn
AUTHOR
Hugo Pfoertner, Mar 15 2004
EXTENSIONS
a(1)=1 prepended by Max Alekseyev, Jun 29 2016
a(6)-a(50) from Cynthia Miaina Rasamimanananivo, Jun 28 2016, Jul 01 2016, Aug 05 2016, Aug 15 2016
Definition edited by N. J. A. Sloane, May 13 2020
STATUS
approved
Number of edges formed by sides and straight "chords" in a right triangle when each side is divided by vertices into n equal segments.
+10
27
3, 21, 132, 429, 1272, 2826, 5640, 10461, 17094, 26847, 41046, 61041, 84051, 118974, 157209, 204393, 264855, 346524, 428880, 541683, 654087, 793611, 961179, 1167468, 1357515, 1615209, 1891980, 2198019, 2530275, 2957808, 3341439, 3860652, 4371006, 4959636, 5572167, 6277722, 6950064, 7859406, 8763780, 9722571, 10687506, 11934912, 13029834, 14450598, 15805026, 17250795, 18863397, 20763204, 22372839, 24450474
OFFSET
1,1
FORMULA
By the Euler characteristic, a(n) = A274585(n) + A092867(n) - 1 = A092866(n) + A092867(n) + 3n - 1.
CROSSREFS
If the boundary points are in general position, we get A367117, A213827, A367118, A367119. - N. J. A. Sloane, Nov 09 2023
KEYWORD
nonn
AUTHOR
Cynthia Miaina Rasamimanananivo and Max Alekseyev, Jun 29 2016, Sep 02 2016
STATUS
approved
Number of intersections inside an equilateral triangular figure formed by the straight line segments mutually connecting all vertices and all points that divide the sides into n equal parts. If three or more lines meet at an interior point this intersection is counted only once.
+10
26
0, 4, 49, 166, 543, 1237, 2511, 4762, 7777, 12262, 18933, 28504, 39078, 56065, 73879, 95962, 124653, 164761, 203259, 258646, 311233, 377932, 458793, 560755, 648936, 775258, 908893, 1056520, 1215087, 1428193, 1607871, 1866007, 2111488, 2399545, 2694010, 3040201, 3356433, 3811387, 4253074, 4720102, 5180466, 5806687, 6324906, 7035949, 7690900, 8392036, 9180330, 10136287, 10894551, 11930833
OFFSET
1,2
COMMENTS
A detailed example for n=5 is given at the Pfoertner link.
FORMULA
a(n) = A274585(n) - 3n.
EXAMPLE
a(2)=4 because there are 3 intersection points between the triangle medians and the line segments connecting the midpoints of the sides plus the intersection of the 3 medians at the centroid.
MAPLE
Inter:= proc(p1x, p1y, p2x, p2y, q1x, q1y, q2x, q2y)
local det, x, y;
det:= p1x*q1y-p1x*q2y-p1y*q1x+p1y*q2x-p2x*q1y+p2x*q2y+p2y*q1x-p2y*q2x;
if det = 0 then return NULL fi;
x:= (p1x*p2y*q1x-p1x*p2y*q2x-p1x*q1x*q2y+p1x*q1y*q2x-p1y*p2x*q1x+p1y*p2x*q2x+p2x*q1x*q2y-p2x*q1y*q2x)/det;
y:= (p1x*p2y*q1y-p1x*p2y*q2y-p1y*p2x*q1y+p1y*p2x*q2y-p1y*q1x*q2y+p1y*q1y*q2x+p2y*q1x*q2y-p2y*q1y*q2x)/det;
if x >0 and y > 0 and x + y < 1 then [x, y]
else NULL
fi
end proc:
F:= proc(n) local A, B, C, Pairs, Pts;
A:= [seq([j/n, 0], j=0..n)];
B:= [seq([0, j/n], j=0..n)];
C:= [seq([j/n, 1-j/n], j=0..n)];
Pairs:= [seq(seq([A[i], B[j]], i=2..n+1), j=2..n+1),
seq(seq([A[i], C[j]], i=1..n), j=1..n),
seq(seq([B[i], C[j]], i=1..n), j=2..n+1)];
Pts:= {seq(seq(Inter(op(Pairs[i][1]), op(Pairs[i][2]), op(Pairs[j][1]), op(Pairs[j][2])), j=1..i-1), i=2..nops(Pairs))};
nops(Pts);
end proc:
map(F, [$1..20]); # Robert Israel, Jun 30 2016
MATHEMATICA
Inter[{p1x_, p1y_}, {p2x_, p2y_}, {q1x_, q1y_}, {q2x_, q2y_}] := Module[ {det, x, y}, det = p1x q1y - p1x q2y - p1y q1x + p1y q2x - p2x q1y + p2x q2y + p2y q1x - p2y q2x; If[det == 0, Return[Nothing]]; x = (p1x p2y q1x - p1x p2y q2x - p1x q1x q2y + p1x q1y q2x - p1y p2x q1x + p1y p2x q2x + p2x q1x q2y - p2x q1y q2x)/det; y = (p1x p2y q1y - p1x p2y q2y - p1y p2x q1y + p1y p2x q2y - p1y q1x q2y + p1y q1y q2x + p2y q1x q2y - p2y q1y q2x)/det; If[x > 0 && y > 0 && x + y < 1, {x, y}, Nothing]];
F[n_] := F[n] = Module[{A, B, K, Pairs, Pts}, A = Table[{j/n, 0}, {j, 0, n}]; B = Table[{0, j/n}, {j, 0, n}]; K = Table[{j/n, 1 - j/n}, {j, 0, n}]; Pairs = {Table[Table[{A[[i]], B[[j]]}, {i, 2, n+1}], {j, 2, n+1}], Table[Table[{A[[i]], K[[j]]}, {i, 1, n}], {j, 1, n}], Table[Table[ {B[[i]], K[[j]]}, {i, 1, n}], {j, 2, n+1}]} // Flatten[#, 2]&; Pts = Table[Table[Inter[Pairs[[i, 1]], Pairs[[i, 2]], Pairs[[j, 1]], Pairs[[j, 2]]], {j, 1, i-1}], {i, 2, Length[Pairs]}]; Flatten[Pts, 1] // Union // Length];
Table[Print[n, " ", F[n]]; F[n], {n, 1, 20}] (* Jean-François Alcover, Apr 11 2019, after Robert Israel *)
CROSSREFS
Cf. A092867 (regions formed by the diagonals), A274585 (points both inside and on the triangle sides), A274586 (edges).
Cf. A006561 (number of intersections of diagonals of regular n-gon), A091908 (intersections between line segments connecting vertices with subdivision points on opposite side).
If the boundary points are in general position, we get A367117, A213827, A367118, A367119. - N. J. A. Sloane, Nov 09 2023
KEYWORD
nonn
AUTHOR
Hugo Pfoertner, Mar 10 2004
EXTENSIONS
a(1) = 0 prepended by Max Alekseyev, Jun 29 2016
a(4) corrected and a(6)-a(20) added by Cynthia Miaina Rasamimanananivo, Jun 28 2016
a(20) corrected by Robert Israel, Jun 30 2016
a(21)-a(50) from Cynthia Miaina Rasamimanananivo, Jun 30 - Aug 23, 2016
"Equilateral" added to definition by N. J. A. Sloane, May 13 2020
STATUS
approved
Place n points in general position on each side of an equilateral triangle, and join every pair of the 3*n+3 boundary points by a chord; sequence gives number of regions in the resulting planar graph.
+10
8
1, 13, 82, 307, 841, 1891, 3718, 6637, 11017, 17281, 25906, 37423, 52417, 71527, 95446, 124921, 160753, 203797, 254962, 315211, 385561, 467083, 560902, 668197, 790201, 928201, 1083538, 1257607, 1451857, 1667791, 1906966, 2170993, 2461537, 2780317, 3129106, 3509731, 3924073, 4374067
OFFSET
0,2
COMMENTS
"In general position" implies that the internal lines (or chords) only have simple intersections. There is no interior point where three or more chords meet.
LINKS
Scott R. Shannon, Image for n = 1.
Scott R. Shannon, Image for n = 2.
Scott R. Shannon, Image for n = 5.
FORMULA
Conjecture: a(n) = (1/4)*(9*n^4 + 12*n^3 + 15*n^2 + 12*n + 4).
a(n) = A367119(n) - A367117(n) + 1 by Euler's formula.
CROSSREFS
Cf. A367117 (vertices), A367119 (edges), A091908, A092098, A331782, A367015.
If the boundary points are equally spaced, we get A274585, A092866, A274586, A092867. - N. J. A. Sloane, Nov 09 2023
KEYWORD
nonn
AUTHOR
STATUS
approved
Place n points in general position on each side of an equilateral triangle, and join every pair of the 3*n+3 boundary points by a chord; sequence gives number of edges in the resulting planar graph.
+10
7
3, 24, 153, 588, 1635, 3708, 7329, 13128, 21843, 34320, 51513, 74484, 104403, 142548, 190305, 249168, 320739, 406728, 508953, 629340, 769923, 932844, 1120353, 1334808, 1578675, 1854528, 2165049, 2513028, 2901363, 3333060, 3811233, 4339104, 4920003, 5557368, 6254745, 7015788
OFFSET
0,1
COMMENTS
"In general position" implies that the internal lines (or chords) only have simple intersections. There is no interior point where three or more chords meet.
See A367117 and A367118 for images of the triangle.
FORMULA
Conjecture: a(n) = (3/2)*(3*n^4 + 4*n^3 + 3*n^2 + 4*n + 2).
a(n) = A367117 (n) + A367118 (n) - 1 by Euler's formula.
CROSSREFS
Cf. A367117 (vertices), A367118 (regions), A091908, A092098, A331782, A366932.
If the boundary points are equally spaced, we get A274585, A092866, A274586, A092867. - N. J. A. Sloane, Nov 09 2023
KEYWORD
nonn
AUTHOR
STATUS
approved
a(n) is the total number of points (both boundary and interior points) in the n-th figure shown in A255011 (meaning the figure with 4n points on the perimeter), where the interior points are counted with multiplicity.
+10
6
5, 58, 375, 1376, 3685, 8130, 15743, 27760, 45621, 70970, 105655, 151728, 211445, 287266, 381855, 498080, 639013, 807930, 1008311, 1243840, 1518405, 1836098, 2201215, 2618256, 3091925, 3627130, 4228983, 4902800, 5654101, 6488610, 7412255, 8431168, 9551685, 10780346, 12123895, 13589280, 15183653, 16914370, 18788991
OFFSET
1,1
COMMENTS
An equivalent definition: Place n-1 points in general position on each side of a square, and join every pair of the 4*n+4 boundary points by a chord; sequence gives number of vertices in the resulting planar graph. "In general position" implies that the internal lines (or chords) only have simple intersections. There is no interior point where three or more chords meet. - Scott R. Shannon and N. J. A. Sloane, Nov 05 2023
Equivalently, this is A334697(n) + 4*n.
This is an upper bound on A331449.
FORMULA
Theorem: a(n) = n*(17*n^3-30*n^2+19*n+4)/2.
From Colin Barker, May 27 2020: (Start)
G.f.: x*(5 + 33*x + 135*x^2 + 31*x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
a(n+1) = A367122(n) - A367121(n) + 1 by Euler's formula.
MATHEMATICA
A334698[n_]:=n(17n^3-30n^2+19n+4)/2; Array[A334698, 50] (* or *)
LinearRecurrence[{5, -10, 10, -5, 1}, {5, 58, 375, 1376, 3685}, 50] (* Paolo Xausa, Nov 14 2023 *)
PROG
(PARI) Vec(x*(5 + 33*x + 135*x^2 + 31*x^3) / (1 - x)^5 + O(x^40)) \\ Colin Barker, May 31 2020
CROSSREFS
For the "general position" version, see also A367121 (regions), A367122 (edges), and A367117.
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Nov 13 2023
STATUS
approved
Table read by antidiagonals: Place k points in general position on each side of a regular n-gon and join every pair of the n*(k+1) boundary points by a chord; T(n,k) (n >= 3, k >= 0) gives number of vertices in the resulting planar graph.
+10
3
3, 12, 5, 72, 58, 10, 282, 375, 185, 19, 795, 1376, 1155, 451, 42, 1818, 3685, 4090, 2734, 938, 57, 3612, 8130, 10700, 9478, 5523, 1711, 135, 6492, 15743, 23235, 24463, 18858, 9981, 2943, 171, 10827, 27760, 44485, 52639, 48230, 33771, 16740, 4646, 341
OFFSET
3,1
COMMENTS
"In general position" implies that the internal lines (or chords) formed from the n*k edge points only have simple intersections; there is no interior points where three or more such chords meet. Note that for even-n n-gons, with n>=6, the chords from the n corner points do create non-simple intersections.
LINKS
Scott R. Shannon, Image for T(5,3).
Scott R. Shannon, Image for T(6,2).
Scott R. Shannon, Image for T(7,1).
Scott R. Shannon, Image for T(8,1).
FORMULA
T(n,k) = A367190(n,k) - A366253(n,k) + 1 by Euler's formula.
T(3,k) = A367117(k) = (9/4)*k^4 + 3*k^3 + (3/4)*k^2 + 3*k + 3.
Conjectured:
T(4,k) = A334698(k+1) = (17/2)*k^4 + 19*k^3 + (31/2)*k^2 + 10*k + 5.
T(5,k) = (45/2)*k^4 + 60*k^3 + 60*k^2 + (65/2)*k + 10.
T(6,k) = (195/4)*k^4 + (285/2)*k^3 + (627/4)*k^2 + 84*k + 19.
T(7,k) = (371/4)*k^4 + 287*k^3 + (1337/4)*k^2 + 182*k + 42.
T(8,k) = 161*k^4 + 518*k^3 + 627*k^2 + 348*k + 57.
T(9,k) = 261*k^4 + 864*k^3 + (2151/2)*k^2 + (1215/2)*k + 135.
T(10,k) = (1605/4)*k^4 + (2715/2)*k^3 + (6905/4)*k^2 + 990*k + 171.
EXAMPLE
The table begins:
3, 12, 72, 282, 795, 1818, 3612, 6492, 10827, 17040, 25608, 37062, 51987,...
5, 58, 375, 1376, 3685, 8130, 15743, 27760, 45621, 70970, 105655, 151728,...
10, 185, 1155, 4090, 10700, 23235, 44485, 77780, 126990, 196525, 291335,...
19, 451, 2734, 9478, 24463, 52639, 100126, 174214, 283363, 437203, 646534,...
42, 938, 5523, 18858, 48230, 103152, 195363, 338828, 549738, 846510, 1249787,...
57, 1711, 9981, 33771, 85849, 182847, 345261, 597451, 967641, 1487919, 2194237,...
135, 2943, 16740, 56106, 141885, 301185, 567378, 980100, 1585251, 2434995,...
171, 4646, 26336, 87831, 221351, 468746, 881496, 1520711, 2457131, 3771126,...
341, 7128, 39666, 131450, 330165, 697686, 1310078, 2257596, 3644685, 5589980,...
313, 10204, 57199, 189214, 474361, 1000948, 1877479, 3232654, 5215369, 7994716,...
728, 14677, 80457, 264602, 661570, 1393743, 2611427, 4492852, 7244172,...
771, 19909, 109586, 359892, 898591, 1891121, 3540594, 6087796, 9811187,...
1380, 27030, 146565, 479370, 1194600, 2511180, 4697805, 8072940, 13004820,...
1393, 35085, 191353, 625477, 1557297, 3271213, 6116185, 10505733,......
.
.
.
CROSSREFS
Cf. A367117 (first row), A334698 (second row), A007569 (first column), A366253 (regions), A367190 (edges).
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved

Search completed in 0.008 seconds