[go: up one dir, main page]

login
A334697
a(n) is the number of interior points in the n-th figure shown in A255011 (meaning the figure with 4n points on the perimeter), counted with multiplicity.
3
1, 50, 363, 1360, 3665, 8106, 15715, 27728, 45585, 70930, 105611, 151680, 211393, 287210, 381795, 498016, 638945, 807858, 1008235, 1243760, 1518321, 1836010, 2201123, 2618160, 3091825, 3627026, 4228875, 4902688, 5653985, 6488490, 7412131, 8431040, 9551553, 10780210, 12123755, 13589136, 15183505, 16914218, 18788835
OFFSET
1,2
FORMULA
Theorem: a(n) = n*(17*n^3-30*n^2+19*n-4)/2.
From Colin Barker, May 27 2020: (Start)
G.f.: x*(1 + 45*x + 123*x^2 + 35*x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
EXAMPLE
Scott Shannon's illustration for n=2 shows 29 interior intersection points, of which 20 are simple intersections, 8 are triple intersections, and one (the central point) is a 4-fold intersection. A point where d lines meet is equivalent to C(d,2) simple points. So a(2) = 20*1 + 8*3 + 1*6 = 50.
PROG
(PARI) Vec(x*(1 + 45*x + 123*x^2 + 35*x^3) / (1 - x)^5 + O(x^30)) \\ Colin Barker, May 31 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved