[go: up one dir, main page]

login
Search: a336563 -id:a336563
     Sort: relevance | references | number | modified | created      Format: long | short | data
The sum of the aliquot coreful divisors of the nonsquarefree numbers.
+0
1
2, 6, 3, 6, 14, 6, 10, 18, 5, 12, 14, 30, 36, 30, 22, 15, 42, 7, 10, 26, 24, 42, 30, 21, 62, 34, 96, 15, 38, 70, 39, 42, 66, 30, 46, 90, 14, 33, 80, 78, 126, 98, 58, 39, 90, 11, 62, 30, 42, 126, 66, 60, 102, 70, 216, 21, 74, 30, 114, 51, 78, 150, 78, 82, 126, 13
OFFSET
1,1
COMMENTS
A coreful divisor d of n is a divisor that is divisible by every prime that divides n (see also A307958).
The positive terms of A336563: if k is a squarefree number (A005117) then the only coreful divisor of k is k itself, so k has no aliquot coreful divisors.
The number of the aliquot coreful divisors of the n-th nonsquarefree number is A368039(n).
LINKS
FORMULA
a(n) = A336563(A013929(n)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = (A065487 - 1)/(1-1/zeta(2))^2 = 1.50461493205911656114... .
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; Select[Array[s, 300], # > 0 &]
PROG
(PARI) lista(kmax) = {my(f); for(k = 1, kmax, f = factor(k); if(!issquarefree(f), print1(prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - 1) - k, ", "))); }
(Python)
from math import prod, isqrt
from sympy import mobius, factorint
def A373058(n):
def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return prod((p**(e+1)-1)//(p-1)-1 for p, e in factorint(m).items())-m # Chai Wah Wu, Jul 22 2024
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, May 21 2024
STATUS
approved
a(n) is the unique number m such that A336563(m) = A372742(n).
+0
3
4, 9, 25, 49, 121, 27, 169, 289, 24, 361, 529, 54, 841, 961, 36, 1369, 1681, 1849, 2209, 2809, 343, 3481, 3721, 4489, 5041, 5329, 6241, 100, 6889, 189, 7921, 72, 9409, 112, 10201, 10609, 11449, 11881, 686, 12769, 16129, 17161, 225, 18769, 19321, 196, 22201, 160
OFFSET
1,1
COMMENTS
Includes all the squares of primes (A001248).
LINKS
FORMULA
A336563(a(n)) = A372742(n).
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; seq[max_] := Module[{v = w = Table[0, {max}], i}, Do[i = s[k]; If[1 <= i <= max, v[[i]]++; w[[i]] = k], {k, 1, max^2}]; w[[Position[v, 1] // Flatten]]]; seq[200]
PROG
(PARI) s(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + 1) - 1)/(f[i, 1] -1) - 1) - n; }
lista(nmax) = {my(v = w = vector(nmax), i); for(k = 1, nmax^2, i = s(k); if(i > 0 && i <= nmax, v[i]++; w[i] = k)); for(k = 1, nmax, if(v[k] == 1, print1(w[k], ", "))); }
CROSSREFS
A001248 is a subsequence.
Similar sequences: A357313, A357325, A361420.
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 12 2024
STATUS
approved
Numbers k such that there is a unique number m for which the sum of the aliquot coreful divisors of m (A336563) is k.
+0
4
2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 23, 24, 29, 31, 36, 37, 41, 43, 47, 53, 56, 59, 61, 67, 71, 73, 79, 80, 83, 84, 89, 96, 97, 98, 101, 103, 107, 109, 112, 113, 127, 131, 135, 137, 139, 140, 149, 150, 151, 156, 157, 163, 167, 173, 179, 181, 191, 193, 197, 198
OFFSET
1,1
COMMENTS
A coreful divisor d of n is a divisor that is divisible by every prime that divides n (see also A307958).
Numbers k such that A372739(k) = 1.
The corresponding values of m are in A372743.
Includes all the primes numbers.
LINKS
FORMULA
a(n) = A336563(A372743(n)).
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; seq[max_] := Module[{v = Table[0, {max}], i}, Do[i = s[k]; If[1 <= i <= max, v[[i]]++], {k, 1, max^2}]; Position[v, 1] // Flatten]; seq[200]
PROG
(PARI) s(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + 1) - 1)/(f[i, 1] -1) - 1) - n; }
lista(nmax) = {my(v = vector(nmax), i); for(k=1, nmax^2, i = s(k); if(i > 0 && i <= nmax, v[i]++)); for(k = 1, nmax, if(v[k] == 1, print1(k, ", "))); }
CROSSREFS
A000040 is a subsequence.
Similar sequences: A057709, A357324, A361419.
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 12 2024
STATUS
approved
Coreful highly touchable numbers: numbers m > 0 such that a record number of numbers k have m as the sum of the aliquot coreful divisors (A336563) of k.
+0
0
1, 2, 6, 30, 210, 930, 2310, 2730, 30030, 71610, 84630
OFFSET
1,2
COMMENTS
A coreful divisor d of n is a divisor that is divisible by every prime that divides n (see also A307958).
Indices of records of A372739.
The corresponding record values are 0, 1, 3, 6, 8, 9, 11, 12, 15, 16, 17, ... .
a(12) > 2*10^5.
EXAMPLE
a(1) = 1 since it is the least number that is not the sum of aliquot coreful divisors of any number.
a(2) = 2 since it is the least number that is the sum of aliquot coreful divisors of one number: 2 = A336563(4).
a(3) = 6 since it is the least number that is the sum of aliquot coreful divisors of 3 numbers: 6 = A336563(8) = A336563(12) = A336563(18), and there is no number between 2 and 6 that is the sum of aliquot coreful divisors of exactly 2 numbers.
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; seq[m_] := Module[{v = Table[0, {m}], vm = -1, w = {}, i}, Do[i = s[k]; If[1 <= i <= m, v[[i]]++], {k, 1, m^2}]; Do[If[v[[k]] > vm, vm = v[[k]]; AppendTo[w, k]], {k, 1, m}]; w]; seq[1000]
PROG
(PARI) s(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + 1) - 1)/(f[i, 1] - 1) - 1) - n; }
lista(nmax) = {my(v = vector(nmax), vmax = -1, i); for(k = 1, nmax^2, i = s(k); if(i > 0 && i <= nmax, v[i]++)); for(k = 1, nmax, if(v[k] > vmax, vmax = v[k]; print1(k, ", "))); }
CROSSREFS
Similar sequences: A238895, A325177, A331972, A331974.
KEYWORD
nonn,more
AUTHOR
Amiram Eldar, May 12 2024
STATUS
approved
Coreful untouchable numbers: numbers that are not the sum of aliquot coreful divisors (A336563) of any number.
+0
3
1, 4, 8, 9, 16, 20, 25, 27, 28, 32, 40, 44, 45, 48, 49, 50, 52, 54, 63, 64, 68, 72, 75, 76, 81, 88, 92, 99, 100, 104, 108, 116, 117, 121, 124, 125, 128, 136, 144, 147, 148, 152, 153, 160, 162, 164, 169, 171, 172, 175, 176, 184, 188, 189, 192, 196, 200, 207, 208
OFFSET
1,2
COMMENTS
A coreful divisor d of n is a divisor that is divisible by every prime that divides n (see also A307958).
Numbers k such that A372739(k) = 0.
Numbers that are not in the range of A336563.
Except for 1, all the terms are not squarefree (A013929), because if k is squarefree (A005117), and there is a prime p such that p|k, then A336563(p*k) = k.
Includes all the squares of primes (A001248).
The numbers of terms that do not exceed 10^k, for k = 1, 2, ..., are , 4, 29, 281, 2762, 27690, ... . Apparently, the asymptotic density of this sequence exists and equals 0.27... .
LINKS
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; seq[max_] := Module[{v = Table[0, {max}], i}, Do[i = s[k]; If[0 < i <= max, v[[i]]++], {k, 1, max^2}]; Position[v, _?(# == 0 &)] // Flatten]; seq[200]
PROG
(PARI) s(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + 1) - 1)/(f[i, 1] - 1) - 1) - n; }
lista(nmax) = {my(v = vector(nmax), i); for(k = 1, nmax^2, i = s(k); if(i > 0 && i <= nmax, v[i]++)); for(k = 1, nmax, if(v[k] == 0, print1(k, ", "))); }
CROSSREFS
A001248 is a subsequence.
Similar sequences: A005114, A063948 (unitary), A324276 (bi-unitary), A324277 (infinitary).
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 12 2024
STATUS
approved
a(n) is the number of possible values of k such that the sum of aliquot coreful divisors of k (A336563) is n.
+0
4
0, 1, 1, 0, 1, 3, 1, 0, 0, 2, 1, 1, 1, 3, 2, 0, 1, 1, 1, 0, 2, 2, 1, 1, 0, 2, 0, 0, 1, 6, 1, 0, 2, 2, 2, 1, 1, 2, 3, 0, 1, 5, 1, 0, 0, 2, 1, 0, 0, 0, 2, 0, 1, 0, 2, 1, 2, 2, 1, 2, 1, 3, 0, 0, 2, 4, 1, 0, 2, 4, 1, 0, 1, 2, 0, 0, 2, 5, 1, 1, 0, 2, 1, 1, 2, 2, 2
OFFSET
1,6
COMMENTS
A coreful divisor d of n is a divisor that is divisible by every prime that divides n (see also A307958).
LINKS
FORMULA
a(n) = 0 if and only if n is in A372740.
a(n) = 1 if and only if n is in A372742.
EXAMPLE
a(2) = 1 since there is 1 possible value of k, k = 4, such that A336563(k) = 2.
a(6) = 3 since there are 3 possible values of k, k = 8, 12 and 18, such that A336563(k) = 6.
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1) - 1; s[1] = 0; s[n_] := Times @@ f @@@ FactorInteger[n] - n; seq[max_] := Module[{v = Table[0, {max}], i}, Do[i = s[k]; If[0 < i <= max, v[[i]]++], {k, 1, max^2}]; v]; seq[100]
PROG
(PARI) s(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2] + 1) - 1)/(f[i, 1] - 1) - 1) - n; }
lista(nmax) = {my(v = vector(nmax), i); for(k = 1, nmax^2, i = s(k); if(i > 0 && i <= nmax, v[i]++)); v; }
CROSSREFS
Similar sequences: A048138, A324938, A331971, A331973.
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 12 2024
STATUS
approved
a(n) = n - A308135(n), where A308135(n) is the sum of non-coreful divisors of n.
+0
5
1, 1, 2, 3, 4, 0, 6, 7, 8, 2, 10, 2, 12, 4, 6, 15, 16, 3, 18, 8, 10, 8, 22, 6, 24, 10, 26, 14, 28, -12, 30, 31, 18, 14, 22, 17, 36, 16, 22, 20, 40, -12, 42, 26, 27, 20, 46, 14, 48, 17, 30, 32, 52, 12, 38, 34, 34, 26, 58, -18, 60, 28, 43, 63, 46, -12, 66, 44, 42, -4, 70, 45, 72, 34, 41, 50, 58, -12, 78, 44, 80, 38, 82, -14, 62
OFFSET
1,3
LINKS
FORMULA
a(n) = n - A308135(n) = n - (sigma(n) - A057723(n)).
a(n) = A336563(n) + A033879(n). [Corrected by Georg Fischer, Dec 13 2022]
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = A065487 - A013661 + 1 = 0.586357... . - Amiram Eldar, Dec 08 2023
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1); fc[p_, e_] := f[p, e] - 1; a[1] = 1; a[n_] := n - Times @@ f @@@ (fct = FactorInteger[n]) + Times @@ fc @@@ fct; Array[a, 100] (* Amiram Eldar, Dec 08 2023 *)
PROG
(PARI)
A007947(n) = factorback(factorint(n)[, 1]);
A057723(n) = { my(r=A007947(n)); (r*sigma(n/r)); };
A308135(n) = (sigma(n)-A057723(n));
A336564(n) = (n - A308135(n));
KEYWORD
sign
AUTHOR
Antti Karttunen, Jul 27 2020
STATUS
approved
Numbers k for which (A057723(k)-k) is equal to gcd(k-A308135(k), A057723(k)-k).
+0
4
6, 28, 234, 496, 588, 600, 1521, 1638, 6552, 8128, 55860, 89376, 33550336, 168836850
OFFSET
1,1
COMMENTS
Numbers k for which A336563(k) = A336566(n) [= gcd(A336563(n), A336564(n))].
Numbers k such that either both A336563(k) and A336564(k) are zero (in which case k is squarefree), or A336563(k) divides A336564(k), in which case k is not squarefree.
Also numbers k for which A336647(n) = 2*n - A057723(n).
Question: Are there any other odd terms apart from 1521 = 39^2 ?
PROG
(PARI)
A007947(n) = factorback(factorint(n)[, 1]);
A057723(n) = { my(r=A007947(n)); (r*sigma(n/r)); };
isA336565(n) = { my(b=A057723(n), c=(sigma(n)-b), d=(b-n)); (gcd(d, (n-c))==d); };
CROSSREFS
Cf. A000396 (a subsequence).
Cf. also A326145.
KEYWORD
nonn,more
AUTHOR
Antti Karttunen, Jul 26 2020
STATUS
approved
a(n) = n - A336566(n).
+0
3
0, 1, 1, 3, 1, 6, 1, 7, 8, 8, 1, 10, 1, 10, 9, 15, 1, 15, 1, 18, 11, 14, 1, 18, 24, 16, 25, 14, 1, 18, 1, 31, 15, 20, 13, 35, 1, 22, 17, 30, 1, 30, 1, 42, 42, 26, 1, 34, 48, 49, 21, 50, 1, 42, 17, 54, 23, 32, 1, 54, 1, 34, 62, 63, 19, 54, 1, 66, 27, 66, 1, 69, 1, 40, 74, 74, 19, 66, 1, 78, 80, 44, 1, 70, 23, 46, 33, 86
OFFSET
1,4
COMMENTS
Some terms, for example a(600) and a(6552), are negative. - Georg Fischer, Jul 31 2020
FORMULA
a(n) = n - A336566(n).
PROG
(PARI)
A007947(n) = factorback(factorint(n)[, 1]);
A057723(n) = { my(r=A007947(n)); (r*sigma(n/r)); };
A308135(n) = (sigma(n)-A057723(n));
A336563(n) = (A057723(n)-n);
A336564(n) = (n - A308135(n));
A336566(n) = gcd(A336563(n), A336564(n));
A336647(n) = (n - A336566(n));
CROSSREFS
Cf. A336555 (positions where differs from A336646).
Cf. A336565 (positions where a(n) = 2*n - A057723(n) = n - A336563(n)).
Cf. also A336645.
KEYWORD
sign
AUTHOR
Antti Karttunen, Jul 30 2020
STATUS
approved
Sum of proper divisors of {n divided by its largest squarefree divisor}.
+0
3
0, 0, 0, 1, 0, 0, 0, 3, 1, 0, 0, 1, 0, 0, 0, 7, 0, 1, 0, 1, 0, 0, 0, 3, 1, 0, 4, 1, 0, 0, 0, 15, 0, 0, 0, 6, 0, 0, 0, 3, 0, 0, 0, 1, 1, 0, 0, 7, 1, 1, 0, 1, 0, 4, 0, 3, 0, 0, 0, 1, 0, 0, 1, 31, 0, 0, 0, 1, 0, 0, 0, 16, 0, 0, 1, 1, 0, 0, 0, 7, 13, 0, 0, 1, 0, 0, 0, 3, 0, 1, 0, 1, 0, 0, 0, 15, 0, 1, 1, 8, 0, 0, 0, 3, 0
OFFSET
1,8
FORMULA
a(n) = A001065(A003557(n)).
a(n) = A335341(n) - A003557(n) = A336563(n) / A007947(n).
PROG
(PARI)
A007947(n) = factorback(factorint(n)[, 1]);
A057723(n) = { my(r=A007947(n)); (r*sigma(n/r)); };
A336563(n) = (A057723(n)-n);
A336567(n) = (A336563(n)/A007947(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jul 27 2020
STATUS
approved

Search completed in 0.017 seconds