Displaying 1-10 of 11 results found.
a(n) = 2*(10^(2n+1)-1)/9 - 2*10^n.
+10
16
0, 202, 22022, 2220222, 222202222, 22222022222, 2222220222222, 222222202222222, 22222222022222222, 2222222220222222222, 222222222202222222222, 22222222222022222222222, 2222222222220222222222222, 222222222222202222222222222, 22222222222222022222222222222, 2222222222222220222222222222222
FORMULA
G.f.: 2*x*(101 - 200*x)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
E.g.f.: 2*exp(x)*(10*exp(99*x) - 9*exp(9*x) - 1)/9. - Stefano Spezia, Jul 13 2024
MAPLE
A332120 := n -> 2*((10^(2*n+1)-1)/9-10^n);
MATHEMATICA
Array[2 ((10^(2 # + 1)-1)/9 - 10^#) &, 15, 0]
PROG
(PARI) apply( { A332120(n)=(10^(n*2+1)\9-10^n)*2}, [0..15])
(Python) def A332120(n): return (10**(n*2+1)//9-10**n)*2
CROSSREFS
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332130 .. A332190 (variants with different repeated digit 3, ..., 9).
Cf. A332121 .. A332129 (variants with different middle digit 1, ..., 9).
a(n) = 7*(10^(2n+1)-1)/9 - 6*10^n.
+10
9
1, 717, 77177, 7771777, 777717777, 77777177777, 7777771777777, 777777717777777, 77777777177777777, 7777777771777777777, 777777777717777777777, 77777777777177777777777, 7777777777771777777777777, 777777777777717777777777777, 77777777777777177777777777777, 7777777777777771777777777777777
COMMENTS
For n == 0 or n == 2 (mod 6), there is no obvious divisibility pattern.
According to M. Kamada, n = 116 is the only index of a prime up to n = 10^5.
FORMULA
For n == 1 (mod 3), 3 | a(n) and a(n)/3 = 259*(10^(2n+1)-1)/999 - 2*10^n;
for n == 3 or 5 (mod 6), 13 | a(n) and a(n)/13 = (A(n)-1)*10^n + B(n), where A(n) (resp. B(n)) are the n leftmost (resp. rightmost) digits of 59829*(10^(ceiling(n/6)*6)-1)/(10^6-1).
G.f.: (1 + 606*x - 1300*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n>2.
(End)
E.g.f.: (1/9)*exp(x)*(70*exp(99*x) - 54*exp(9*x) - 7). - Stefano Spezia, Feb 08 2020
MATHEMATICA
Array[7 (10^(2 # + 1) - 1)/9 - 6*10^# &, 15, 0] (* or *)
CoefficientList[Series[(1 + 606 x - 1300 x^2)/((1 - x) (1 - 10 x) (1 - 100 x)), {x, 0, 15}], x] (* Michael De Vlieger, Feb 08 2020 *)
Table[FromDigits[Join[PadRight[{}, n, 7], {1}, PadRight[{}, n, 7]]], {n, 0, 20}] (* or *) LinearRecurrence[ {111, -1110, 1000}, {1, 717, 77177}, 20] (* Harvey P. Dale, Apr 04 2024 *)
PROG
(PARI) apply( { A332171(n)=10^(n*2+1)\9*7-6*10^n}, [0..15])
(PARI) Vec((1 + 606*x - 1300*x^2) / ((1 - x)*(1 - 10*x)*(1 - 100*x)) + O(x^15)) \\ Colin Barker, Feb 07 2020
(Python) def A332171(n): return 10**(n*2+1)//9*7-6*10^n
CROSSREFS
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332170 .. A332179 (variants with different middle digit 2, ..., 9).
a(n) = 10^(2n+1) - 1 - 8*10^n.
+10
9
1, 919, 99199, 9991999, 999919999, 99999199999, 9999991999999, 999999919999999, 99999999199999999, 9999999991999999999, 999999999919999999999, 99999999999199999999999, 9999999999991999999999999, 999999999999919999999999999, 99999999999999199999999999999, 9999999999999991999999999999999
COMMENTS
See A183184 = {1, 5, 13, 43, 169, 181, ...} for the indices of primes.
FORMULA
G.f.: (1 + 808*x - 1700*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332191 := n -> 10^(n*2+1)-1-8*10^n;
MATHEMATICA
Array[ 10^(2 # + 1)-1-8*10^# &, 15, 0]
PROG
(PARI) apply( { A332191(n)=10^(n*2+1)-1-8*10^n}, [0..15])
(Python) def A332191(n): return 10**(n*2+1)-1-8*10^n
CROSSREFS
Cf. A138148 (cyclops numbers with binary digits only), A002113 (palindromes).
Cf. A332121 .. A332181 (variants with different repeated digit 2, ..., 8).
a(n) = (10^(2n+1)-1)/3 - 2*10^n.
+10
4
1, 313, 33133, 3331333, 333313333, 33333133333, 3333331333333, 333333313333333, 33333333133333333, 3333333331333333333, 333333333313333333333, 33333333333133333333333, 3333333333331333333333333, 333333333333313333333333333, 33333333333333133333333333333, 3333333333333331333333333333333
COMMENTS
See A183174 = {1, 3, 7, 61, 90, 92, 269, ...} for the indices of primes.
FORMULA
G.f.: (1 + 202*x - 500*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332131 := n -> (10^(2*n+1)-1)/3-2*10^n;
MATHEMATICA
Array[3 (10^(2 # + 1)-1)/9 - 2*10^# &, 15, 0]
PROG
(PARI) apply( { A332131(n)=10^(n*2+1)\3-2*10^n}, [0..15])
(Python) def A332131(n): return 10**(n*2+1)//3-2*10**n
CROSSREFS
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332130 .. A332139 (variants with different middle digit 0, ..., 9).
a(n) = 8*(10^(2n+1)-1)/9 - 7*10^n.
+10
3
1, 818, 88188, 8881888, 888818888, 88888188888, 8888881888888, 888888818888888, 88888888188888888, 8888888881888888888, 888888888818888888888, 88888888888188888888888, 8888888888881888888888888, 888888888888818888888888888, 88888888888888188888888888888, 8888888888888881888888888888888
FORMULA
G.f.: (1 + 707*x - 1500*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332181 := n -> 8*(10^(2*n+1)-1)/9-7*10^n;
MATHEMATICA
Array[8 (10^(2 # + 1)-1)/9 - 7*10^# &, 15, 0]
PROG
(PARI) apply( { A332181(n)=10^(n*2+1)\9*8-7*10^n}, [0..15])
(Python) def A332181(n): return 10**(n*2+1)//9*8-7*10**n
CROSSREFS
Cf. A138148 (cyclops numbers with binary digits only).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332180 .. A332189 (variants with different middle digit 0, ..., 9).
a(n) = 4*(10^(2*n+1)-1)/9 - 3*10^n.
+10
2
1, 414, 44144, 4441444, 444414444, 44444144444, 4444441444444, 444444414444444, 44444444144444444, 4444444441444444444, 444444444414444444444, 44444444444144444444444, 4444444444441444444444444, 444444444444414444444444444, 44444444444444144444444444444, 4444444444444441444444444444444
FORMULA
G.f.: (1 + 303*x - 700*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332141 := n -> 4*(10^(2*n+1)-1)/9-3*10^n;
MATHEMATICA
Array[4 (10^(2 # + 1)-1)/9 - 3*10^# &, 15, 0]
LinearRecurrence[{111, -1110, 1000}, {1, 414, 44144}, 20] (* or *) Table[ FromDigits[Join[PadRight[{}, n, 4], {1}, PadRight[{}, n, 4]]], {n, 0, 20}](* Harvey P. Dale, Aug 17 2020 *)
PROG
(PARI) apply( { A332141(n)=10^(n*2+1)\9*4-3*10^n}, [0..15])
(Python) def A332141(n): return 10**(n*2+1)//9*4-3*10**n
CROSSREFS
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332140 .. A332149 (variants with different middle digit 0, ..., 9).
a(n) = 5*(10^(2*n+1)-1)/9 - 4*10^n.
+10
2
1, 515, 55155, 5551555, 555515555, 55555155555, 5555551555555, 555555515555555, 55555555155555555, 5555555551555555555, 555555555515555555555, 55555555555155555555555, 5555555555551555555555555, 555555555555515555555555555, 55555555555555155555555555555, 5555555555555551555555555555555
FORMULA
G.f.: (1 + 404*x - 900*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332151 := n -> 5*(10^(2*n+1)-1)/9-4*10^n;
MATHEMATICA
Array[5 (10^(2 # + 1)-1)/9 - 4*10^# &, 15, 0]
Table[With[{c=PadRight[{}, n, 5]}, FromDigits[Join[c, {1}, c]]], {n, 0, 20}] (* Harvey P. Dale, Mar 16 2021 *)
PROG
(PARI) apply( { A332151(n)=10^(n*2+1)\9*5-4*10^n}, [0..15])
(Python) def A332151(n): return 10**(n*2+1)//9*5-4*10**n
CROSSREFS
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332150 .. A332159 (variants with different middle digit 0, ..., 9).
a(n) = 6*(10^(2*n+1)-1)/9 - 5*10^n.
+10
2
1, 616, 66166, 6661666, 666616666, 66666166666, 6666661666666, 666666616666666, 66666666166666666, 6666666661666666666, 666666666616666666666, 66666666666166666666666, 6666666666661666666666666, 666666666666616666666666666, 66666666666666166666666666666, 6666666666666661666666666666666
FORMULA
G.f.: (1 + 505*x - 1100*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332161 := n -> 6*(10^(2*n+1)-1)/9-5*10^n;
MATHEMATICA
Array[6 (10^(2 # + 1)-1)/9 - 5*10^# &, 15, 0]
PROG
(PARI) apply( { A332161(n)=10^(n*2+1)\9*6-5*10^n}, [0..15])
(Python) def A332161(n): return 10**(n*2+1)//9*6-5*10**n
CROSSREFS
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332121 .. A332191 (variants with different repeated digit 2, ..., 9).
Cf. A332160 .. A332169 (variants with different middle digit 0, ..., 9).
a(n) = 8*(10^(2n+1)-1)/9 - 4*10^n.
+10
2
4, 848, 88488, 8884888, 888848888, 88888488888, 8888884888888, 888888848888888, 88888888488888888, 8888888884888888888, 888888888848888888888, 88888888888488888888888, 8888888888884888888888888, 888888888888848888888888888, 88888888888888488888888888888, 8888888888888884888888888888888
FORMULA
G.f.: (4 + 404*x - 1200*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332184 := n -> 8*(10^(2*n+1)-1)/9-4*10^n;
MATHEMATICA
Array[8 (10^(2 # + 1)-1)/9- 4*10^# &, 15, 0]
PROG
(PARI) apply( { A332184(n)=10^(n*2+1)\9*8-4*10^n}, [0..15])
(Python) def A332184(n): return 10**(n*2+1)//9*8-4*10**n
CROSSREFS
Cf. A138148 (cyclops numbers with binary digits only).
Cf. A332180 .. A332189 (variants with different middle digit 0, ..., 9).
a(n) = 4*(10^(2*n+1)-1)/9 - 2*10^n.
+10
1
2, 424, 44244, 4442444, 444424444, 44444244444, 4444442444444, 444444424444444, 44444444244444444, 4444444442444444444, 444444444424444444444, 44444444444244444444444, 4444444444442444444444444, 444444444444424444444444444, 44444444444444244444444444444, 4444444444444442444444444444444
FORMULA
G.f.: (2 + 202*x - 600*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
MAPLE
A332142 := n -> 4*(10^(2*n+1)-1)/9-2*10^n;
MATHEMATICA
Array[4 (10^(2 # + 1)-1)/9 - 2*10^# &, 15, 0]
PROG
(PARI) apply( { A332142(n)=10^(n*2+1)\9*4-2*10^n}, [0..15])
(Python) def A332142(n): return 10**(n*2+1)//9*4-2*10**n
CROSSREFS
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332112 .. A332192 (variants with different repeated digit 1, ..., 9).
Cf. A332140 .. A332149 (variants with different middle digit 0, ..., 9).
Search completed in 0.013 seconds
|