[go: up one dir, main page]

login
Search: a331452 -id:a331452
     Sort: relevance | references | number | modified | created      Format: long | short | data
Three-column table read by rows: row n gives [number of triangle-triangle, triangle-quadrilateral, quadrilateral-quadrilateral] contacts for a row of n adjacent congruent rectangles divided by drawing diagonals of all possible rectangles (cf. A331452).
+20
2
4, 0, 0, 14, 8, 0, 20, 48, 4, 60, 80, 28, 68, 224, 68, 148, 368, 124, 224, 616, 268, 336, 1008, 420, 384, 1672, 648, 712, 2208, 972, 972, 3120, 1464, 1300, 4304, 1996, 1496, 6040, 2788, 2044, 7936, 3580, 2612, 10224, 4672, 3540, 12656, 5980, 4224, 16104, 7676, 5484, 19648, 9500
OFFSET
1,1
COMMENTS
For a row of n adjacent rectangles the only polygons formed when dividing all possible rectangles along their diagonals are 3-gons (triangles) and 4-gons (quadrilaterals). Hence the only possible edge-sharing contacts are 3-gons with 3-gons, 3-gons with 4-gons, and 4-gons with 4-gons. This sequence lists the number of these three possible combinations for a row of n adjacent rectangles. Note that the edges along the outside of the n adjacent rectangles are not counted as they are only in one n-gon.
These are graphs T(1,n) described in A331452. - N. J. A. Sloane, Aug 03 2020
FORMULA
Sum of row t = A331757(t) - 2(t + 1).
EXAMPLE
a(1) = 4, a(2) = 0, a(3) = 0. A single rectangle divided along its diagonals consists of four 3-gons, four edges, and no 4-gons. Therefore there are only four 3-gon-to-3-gon contacts. See the link image for n = 1.
a(4) = 14, a(5) = 8, a(6) = 0. Two adjacent rectangles divided along all diagonals consists of fourteen 3-gons and two 4-gons. The two 4-gons are separated and thus share all their edges, eight in total, with 3-gons. There are fourteen pairs of 3-gon-to-3-gon contacts. See the link image for n = 2.
a(7) = 20, a(8) = 48, a(9) = 4. Three adjacent rectangles divided along all diagonals consists of thirty-two 3-gons and fourteen 4-gons. There are two groups of three adjacent 4-gons, so there are four 4-gons-to-4-gon contacts. These, along with the other 4-gons, share 48 edges with 3-gons. There are also twenty 3-gon-to-3-gon contacts. See the link image for n = 3.
.
The table begins:
4,0,0;
14,8,0;
20,48,4;
60,80,28;
68,224,68;
148,368,124;
224,616,268;
336,1008,420;
384,1672,648;
712,2208,972;
972,3120,1464;
1300,4304,1996;
1496,6040,2788;
2044,7936,3580;
2612,10224,4672;
3540,12656,5980;
4224,16104,7676;
5484,19648,9500;
6568,24216,11936;
7836,29616,14468;
See A306302 for a count of the regions and images for other values of n.
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Scott R. Shannon, Aug 02 2020
STATUS
approved
Number of regions in regular n-gon with all diagonals drawn.
(Formerly M3411)
+10
143
0, 0, 1, 4, 11, 24, 50, 80, 154, 220, 375, 444, 781, 952, 1456, 1696, 2500, 2466, 4029, 4500, 6175, 6820, 9086, 9024, 12926, 13988, 17875, 19180, 24129, 21480, 31900, 33856, 41416, 43792, 52921, 52956, 66675, 69996, 82954, 86800, 102050, 97734, 124271, 129404, 149941
OFFSET
1,4
COMMENTS
This sequence and A006533 are two equivalent ways of presenting the same sequence.
A quasipolynomial of order 2520. - Charles R Greathouse IV, Jan 15 2013
Also the circuit rank of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 08 2018
This sequence only counts polygons, in contrast to A006533, which also counts the n segments of the circumscribed circle delimited by the edges of the regular n-gon. Therefore, a(n) = A006533(n) - n. See also A006561 which counts the number of intersection points, and A350000 which considers iterated "cutting along diagonals". - M. F. Hasler, Dec 13 2021
The Petrie polygon orthographic projection of a regular n-simplex is a regular (n+1)-gon with all diagonals drawn. Hence a(n+1) is the number of regions in the Petrie polygon of a regular n-simplex. - Mohammed Yaseen, Nov 05 2022
REFERENCES
Jean Meeus, Wiskunde Post (Belgium), Vol. 10, 1972, pp. 62-63.
C. A. Pickover, The Mathematics of Oz, Problem 58 "The Beauty of Polygon Slicing", Cambridge University Press, 2002.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
M. Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5.
Sascha Kurz, m-gons in regular n-gons (in German).
J. Meeus & N. J. A. Sloane, Correspondence, 1974-1975
B. Poonen and M. Rubinstein, The Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics 11, no. 1 (1998), pp. 135-156; DOI:10.1137/S0895480195281246. [Author's copy]. The latest arXiv version arXiv:math/9508209 has corrected some typos in the published version.
B. Poonen and M. Rubinstein, Mathematica programs for these sequences
Scott R. Shannon, Colored illustration for n = 41 (3rd version). This variation has coloring based on the number of edges of the polygon: red = 3-gon, orange = 4-gon, yellow = 5-gon, light-green = 6-gon etc.
N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 18.
Eric Weisstein's World of Mathematics, Circuit Rank
Eric Weisstein's World of Mathematics, Polygon Diagonal Intersection Graph
Eric Weisstein's World of Mathematics, Regular Polygon Division by Diagonals
FORMULA
For odd n > 3, a(n) = sumstep {i=5, n, 2, (i-2)*floor(n/2)+(i-4)*ceiling(n/2)+1} + x*(x+1)*(2*x+1)/6*n), where x = (n-5)/2. Simplifying the floor/ceiling components gives the PARI code below. - Jon Perry, Jul 08 2003
For odd n, a(n) = (24 - 42*n + 23*n^2 - 6*n^3 + n^4)/24. - Graeme McRae, Dec 24 2004
a(n) = A006533(n) - n. - T. D. Noe, Dec 23 2006
For odd n, binomial transform of [1, 10, 29, 36, 16, 0, 0, 0, ...] = [1, 11, 50, 154, ...]. - Gary W. Adamson, Aug 02 2011
a(n) = A135565(n) - A007569(n) + 1. - Max Alekseyev
See the Mma code in A006533 for the explicit Poonen-Rubenstein formula that holds for all n. - N. J. A. Sloane, Jan 23 2020
MATHEMATICA
del[m_, n_]:=If[Mod[n, m]==0, 1, 0]; R[n_]:=If[n<3, 0, (n^4-6n^3+23n^2-42n+24)/24 + del[2, n](-5n^3+42n^2-40n-48)/48 - del[4, n](3n/4) + del[6, n](-53n^2+310n)/12 + del[12, n](49n/2) + del[18, n]*32n + del[24, n]*19n - del[30, n]*36n - del[42, n]*50n - del[60, n]*190n - del[84, n]*78n - del[90, n]*48n - del[120, n]*78n - del[210, n]*48n]; Table[R[n], {n, 1, 1000}] (* T. D. Noe, Dec 21 2006 *)
PROG
(PARI) /* Only for odd n > 3, not suitable for other values of n! */ { a(n)=local(nr, x, fn, cn, fn2); nr=0; fn=floor(n/2); cn=ceil(n/2); fn2=(fn-1)^2-1; nr=fn2*n+fn+(n-2)*fn+cn; x=(n-5)/2; if (x>0, nr+=x*(x+1)*(2*x+1)/6*n); nr; } \\ Jon Perry, Jul 08 2003
(PARI) apply( {A007678(n)=if(n%2, (((n-6)*n+23)*n-42)*n/24+1, ((n^3/2 -17*n^2/4 +22*n -if(n%4, 31, 40) +!(n%6)*(310 -53*n))/12 +!(n%12)*49/2 +!(n%18)*32 +!(n%24)*19 -!(n%30)*36 -!(n%42)*50 -!(n%60)*190 -!(n%84)*78 -!(n%90)*48 -!(n%120)*78 -!(n%210)*48)*n)}, [1..44]) \\ M. F. Hasler, Aug 06 2021
(Python)
def d(n, m): return not n % m
def A007678(n): return (1176*d(n, 12)*n - 3744*d(n, 120)*n + 1536*d(n, 18)*n - d(n, 2)*(5*n**3 - 42*n**2 + 40*n + 48) - 2304*d(n, 210)*n + 912*d(n, 24)*n - 1728*d(n, 30)*n - 36*d(n, 4)*n - 2400*d(n, 42)*n - 4*d(n, 6)*n*(53*n - 310) - 9120*d(n, 60)*n - 3744*d(n, 84)*n - 2304*d(n, 90)*n + 2*n**4 - 12*n**3 + 46*n**2 - 84*n)//48 + 1 # Chai Wah Wu, Mar 08 2021
CROSSREFS
Cf. A001006, A054726, A006533, A006561, A006600, A007569 (number of vertices), A006522, A135565 (number of line segments).
A062361 gives number of triangles, A331450 and A331451 give distribution of polygons by number of sides.
A333654, A335614, A335646, A337330 give the number of internal n-gon to k-gon contacts for n>=3, k>=n.
A187781 gives number of distinct regions.
KEYWORD
nonn,nice
AUTHOR
N. J. A. Sloane, Bjorn Poonen (poonen(AT)math.princeton.edu)
EXTENSIONS
More terms from Graeme McRae, Dec 26 2004
a(1) = a(2) = 0 prepended by Max Alekseyev, Dec 01 2011
STATUS
approved
a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j).
+10
96
1, 8, 31, 80, 179, 332, 585, 948, 1463, 2136, 3065, 4216, 5729, 7568, 9797, 12456, 15737, 19520, 24087, 29308, 35315, 42120, 50073, 58920, 69025, 80264, 92871, 106756, 122475, 139528, 158681, 179608, 202529, 227400, 254597, 283784, 315957, 350576, 387977
OFFSET
1,2
COMMENTS
Also (1/4) * number of ways to select 3 distinct points forming a triangle of unsigned area = 1/2 from a square of grid points with side length n. Diagonal of triangle A320541. - Hugo Pfoertner, Oct 22 2018
From Chai Wah Wu, Aug 18 2021: (Start)
Theorem: a(n) = n^2 + Sum_{i=2..n} (n+1-i)*(2*n+2-i)*phi(i).
Proof: Since gcd(n,n) = 1 if and only if n = 1, Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) = n^2 + Sum_{i=1..n, j=1..n, gcd(i,j)=1, (i,j) <> (1,1)} (n+1-i)*(n+1-j)
= n^2 + Sum_{i=2..n, j=1..i, gcd(i,j)=1} (n+1-i)*(n+1-j) + Sum_{j=2..n, i=1..j, gcd(i,j)=1} (n+1-i)*(n+1-j) = n^2 + 2*Sum_{i=2..n, j=1..i, gcd(i,j)=1} (n+1-i)*(n+1-j), i.e., the diagonal is not double-counted.
This is equal to n^2 + 2*Sum_{i=2..n, j is a totative of i} (n+1-i)*(n+1-j). Since Sum_{j is a totative of i} 1 = phi(i) and for i > 1, Sum_{j is a totative of i} j = i*phi(i)/2, the conclusion follows.
Similar argument holds for corresponding formulas for A088658, A114043, A114146, A115005, etc.
(End)
LINKS
M. Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5.
R. J. Mathar, Graphical representation among sequences closely related to this one (cf. N. J. A. Sloane, "Families of Essentially Identical Sequences").
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021. (Includes this sequence)
N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
FORMULA
a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j).
As n -> oo, a(n) ~ (3/2)*n^4/Pi^2. This follows from Max Alekseyev's formula in A114043. - N. J. A. Sloane, Jul 03 2020
a(n) = n^2 + Sum_{i=2..n} (n+1-i)*(2n+2-i)*phi(i). - Chai Wah Wu, Aug 15 2021
MAPLE
A115004 := proc(n)
local a, b, r ;
r := 0 ;
for a from 1 to n do
for b from 1 to n do
if igcd(a, b) = 1 then
r := r+(n+1-a)*(n+1-b);
end if;
end do:
end do:
r ;
end proc:
seq(A115004(n), n=1..30); # R. J. Mathar, Jul 20 2017
MATHEMATICA
a[n_] := Sum[(n-i+1) (n-j+1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
Array[a, 40] (* Jean-François Alcover, Mar 23 2020 *)
PROG
(Python)
from math import gcd
def a115004(n):
r=0
for a in range(1, n + 1):
for b in range(1, n + 1):
if gcd(a, b)==1:
r+=(n + 1 - a)*(n + 1 - b)
return r
print([a115004(n) for n in range(1, 51)]) # Indranil Ghosh, Jul 21 2017
(Python)
from sympy import totient
def A115004(n): return n**2 + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2, n+1)) # Chai Wah Wu, Aug 15 2021
(PARI) a(n) = n^2 + sum(i=2, n, (n+1-i)*(2*n+2-i)*eulerphi(i)); \\ Michel Marcus, May 08 2024
CROSSREFS
The following eight sequences are all essentially the same. The simplest is the present sequence, A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020
Main diagonal of array in A114999.
KEYWORD
nonn,nice
AUTHOR
N. J. A. Sloane, Feb 23 2006
STATUS
approved
Number of nodes in regular n-gon with all diagonals drawn.
(Formerly M0724)
+10
66
1, 2, 3, 5, 10, 19, 42, 57, 135, 171, 341, 313, 728, 771, 1380, 1393, 2397, 1855, 3895, 3861, 6006, 5963, 8878, 7321, 12675, 12507, 17577, 17277, 23780, 16831, 31496, 30945, 40953, 40291, 52395, 47017, 66082, 65019, 82290, 80921, 101311, 84883, 123453, 121485
OFFSET
1,2
COMMENTS
I.e., vertex count of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 08 2018
Also the circumference of the n-polygon diagonal intersection graph (since these graphs are Hamiltonian). - Eric W. Weisstein, Mar 08 2018
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
B. Poonen and M. Rubinstein, Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156.
B. Poonen and M. Rubinstein, The number of intersection points made by the diagonals of a regular polygon, SIAM J. on Discrete Mathematics, Vol. 11, No. 1, 135-156 (1998).
B. Poonen and M. Rubinstein, The number of intersection points made by the diagonals of a regular polygon, arXiv:math/9508209 [math.MG], 1995-2006; arXiv version, which has fewer typos than the SIAM version.
B. Poonen and M. Rubinstein, Mathematica programs for these sequences
N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
Eric Weisstein's World of Mathematics, Graph Circumference
Eric Weisstein's World of Mathematics, Polygon Diagonal Intersection Graph
Eric Weisstein's World of Mathematics, Vertex Count
Robert G. Wilson v, Illustration of a(10)
FORMULA
a(n) = A006561(n)+n. - T. D. Noe, Dec 23 2006
If n is odd, a(n) = binomial(n,4) + n. - N. J. A. Sloane, Aug 30 2021
MATHEMATICA
del[m_, n_]:=If[Mod[n, m]==0, 1, 0]; Int[n_]:=If[n<4, n, n + Binomial[n, 4] + del[2, n](-5n^3+45n^2-70n+24)/24 - del[4, n](3n/2) + del[6, n](-45n^2+262n)/6 + del[12, n]*42n + del[18, n]*60n + del[24, n]*35n - del[30, n]*38n - del[42, n]*82n - del[60, n]*330n - del[84, n]*144n - del[90, n]*96n - del[120, n]*144n - del[210, n]*96n]; Table[Int[n], {n, 1, 1000}] (* T. D. Noe, Dec 21 2006 *)
PROG
(Python)
def d(n, m): return not n % m
def A007569(n): return 2 if n == 2 else n*(42*d(n, 12) - 144*d(n, 120) + 60*d(n, 18) - 96*d(n, 210) + 35*d(n, 24)- 38*d(n, 30) - 82*d(n, 42) - 330*d(n, 60) - 144*d(n, 84) - 96*d(n, 90)) + (n**4 - 6*n**3 + 11*n**2 + 18*n -d(n, 2)*(5*n**3 - 45*n**2 + 70*n - 24) - 36*d(n, 4)*n - 4*d(n, 6)*n*(45*n - 262))//24 # Chai Wah Wu, Mar 08 2021
(PARI) apply( {A007569(n)=A006561(n)+n}, [1..44]) \\ M. F. Hasler, Aug 06 2021
CROSSREFS
Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.
KEYWORD
easy,nonn,nice
AUTHOR
N. J. A. Sloane, Bjorn Poonen (poonen(AT)math.princeton.edu)
STATUS
approved
Number of regions into which a figure made up of a row of n adjacent congruent rectangles is divided upon drawing diagonals of all possible rectangles (a(0)=0 by convention).
+10
51
0, 4, 16, 46, 104, 214, 380, 648, 1028, 1562, 2256, 3208, 4384, 5924, 7792, 10052, 12744, 16060, 19880, 24486, 29748, 35798, 42648, 50648, 59544, 69700, 80992, 93654, 107596, 123374, 140488, 159704, 180696, 203684, 228624, 255892, 285152, 317400, 352096, 389576
OFFSET
0,2
COMMENTS
Assuming that the rectangles have vertices at (k,0) and (k,1), k=0..n, the projective map (x,y) -> ((1-y)/(x+1),y/(x+1)) maps their partition to the partition of the right isosceles triangle described by Alekseyev et al. (2015), for which Theorem 13 gives the number of regions, line segments, and intersection points. - Max Alekseyev, Apr 10 2019
The figure is made up of A324042 triangles and A324043 quadrilaterals. - N. J. A. Sloane, Mar 03 2020
LINKS
Max Alekseyev, Illustration for n = 3.
M. A. Alekseyev. On the number of two-dimensional threshold functions, arXiv:math/0602511 [math.CO], 2006-2010; doi:10.1137/090750184, SIAM J. Disc. Math. 24(4), 2010, pp. 1617-1631.
M. A. Alekseyev, M. Basova, and N. Yu. Zolotykh. On the minimal teaching sets of two-dimensional threshold functions, SIAM Journal on Discrete Mathematics 29:1 (2015), 157-165. doi:10.1137/140978090.
Lars Blomberg, Scott R. Shannon and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2020). Also arXiv:2009.07918.
M. Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5, Lemma 2.
Robert Israel, Maple program, Feb 07 2019
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
FORMULA
a(n) = n + (A114043(n+1) - 1)/2, conjectured by N. J. A. Sloane, Feb 07 2019; proved by Max Alekseyev, Apr 10 2019
a(n) = n + A115005(n+1) = n + A141255(n+1)/2. - Max Alekseyev, Apr 10 2019
a(n) = A324042(n) + A324043(n). - Jinyuan Wang, Mar 19 2020
a(n) = Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) + n^2 + 2*n. - N. J. A. Sloane, Apr 11 2020
a(n) = 2n(n+1) + Sum_{i=2..n} (n+1-i)*(2n+2-i)*phi(i). - Chai Wah Wu, Aug 16 2021
MAPLE
# Maple from N. J. A. Sloane, Mar 04 2020, starting at n=1: First define z(n) = A115004
z := proc(n)
local a, b, r ;
r := 0 ;
for a from 1 to n do
for b from 1 to n do
if igcd(a, b) = 1 then
r := r+(n+1-a)*(n+1-b);
end if;
end do:
end do:
r ;
end proc:
a := n-> z(n)+n^2+2*n;
[seq(a(n), n=1..50)];
MATHEMATICA
z[n_] := Sum[(n - i + 1)(n - j + 1) Boole[GCD[i, j] == 1], {i, n}, {j, n}];
a[0] = 0;
a[n_] := z[n] + n^2 + 2n;
a /@ Range[0, 40] (* Jean-François Alcover, Mar 24 2020 *)
PROG
(Python)
from sympy import totient
def A306302(n): return 2*n*(n+1) + sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2, n+1)) # Chai Wah Wu, Aug 16 2021
CROSSREFS
See A331755 for the number of vertices, A331757 for the number of edges.
A column of A288187. See A288177 for additional references.
Also a column of A331452 and A356790.
The following eight sequences are all essentially the same. The simplest is A115004(n), which we denote by z(n). Then A088658(n) = 4*z(n-1); A114043(n) = 2*z(n-1)+2*n^2-2*n+1; A114146(n) = 2*A114043(n); A115005(n) = z(n-1)+n*(n-1); A141255(n) = 2*z(n-1)+2*n*(n-1); A290131(n) = z(n-1)+(n-1)^2; A306302(n) = z(n)+n^2+2*n. - N. J. A. Sloane, Feb 04 2020
KEYWORD
nonn
AUTHOR
Paarth Jain, Feb 05 2019
EXTENSIONS
a(6)-a(20) from Robert Israel, Feb 07 2019
Edited and more terms added by Max Alekseyev, Apr 10 2019
a(0) added by N. J. A. Sloane, Feb 04 2020
STATUS
approved
Number of intersections of diagonals in the interior of a regular n-gon.
(Formerly M3833)
+10
45
0, 0, 0, 1, 5, 13, 35, 49, 126, 161, 330, 301, 715, 757, 1365, 1377, 2380, 1837, 3876, 3841, 5985, 5941, 8855, 7297, 12650, 12481, 17550, 17249, 23751, 16801, 31465, 30913, 40920, 40257, 52360, 46981, 66045, 64981, 82251, 80881, 101270, 84841, 123410, 121441
OFFSET
1,5
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..20000 (first 1000 terms from T. D. Noe)
Johan Gielis and Ilia Tavkhelidze, The general case of cutting of GML surfaces and bodies, arXiv:1904.01414 [math.GM], 2019.
M. Griffiths, Counting the regions in a regular drawing of K_{n,n}, J. Int. Seq. 13 (2010) # 10.8.5.
M. F. Hasler, Interactive illustration of A006561(n), Sep 01 2017. (For colored versions see A006533.)
Roger Mansuy, Des croisements pas si faciles à compter, La Recherche, 547, Mai 2019 (in French).
B. Poonen and M. Rubinstein, The Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, No.1 (1998) pp. 135-156; DOI:10.1137/S0895480195281246. [Copy on B. Poonen's web site.]
B. Poonen and M. Rubinstein, The number of intersection points made by the diagonals of a regular polygon, arXiv:math/9508209 [math.MG]: revision from 2006 has a few typos from the published version corrected.
M. Rubinstein, Drawings for n=4,5,6,....
N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 18.
Robert G. Wilson v, Illustration of a(10)
FORMULA
Let delta(m,n) = 1 if m divides n, otherwise 0.
For n >= 3, a(n) = binomial(n,4) + (-5*n^3 + 45*n^2 - 70*n + 24)*delta(2,n)/24
- (3*n/2)*delta(4,n) + (-45*n^2 + 262*n)*delta(6,n)/6 + 42*n*delta(12,n)
+ 60*n*delta(18,n) + 35*n*delta(24,n) - 38*n*delta(30,n)
- 82*n*delta(42,n) - 330*n*delta(60,n) - 144*n*delta(84,n)
- 96*n*delta(90,n) - 144*n*delta(120,n) - 96*n*delta(210,n). [Poonen and Rubinstein, Theorem 1] - N. J. A. Sloane, Aug 09 2017
For odd n, a(n) = binomial(n,4) = n*(n-1)*(n-2)*(n-3)/24, see A053126. For even n, use this formula, but then subtract 2 for every 3-crossing, subtract 5 for every 4-crossing, subtract 9 for every 5-crossing, etc. The number to be subtracted for a d-crossing is (d-1)*(d-2)/2. - Graeme McRae, Dec 26 2004
a(n) = A007569(n) - n. - T. D. Noe, Dec 23 2006
a(2n+5) = A053126(n+4). - Philippe Deléham, Jun 07 2013
MAPLE
delta:=(m, n) -> if (n mod m) = 0 then 1 else 0; fi;
f:=proc(n) global delta;
if n <= 2 then 0 else \
binomial(n, 4) \
+ (-5*n^3 + 45*n^2 - 70*n + 24)*delta(2, n)/24 \
- (3*n/2)*delta(4, n) \
+ (-45*n^2 + 262*n)*delta(6, n)/6 \
+ 42*n*delta(12, n) \
+ 60*n*delta(18, n) \
+ 35*n*delta(24, n) \
- 38*n*delta(30, n) \
- 82*n*delta(42, n) \
- 330*n*delta(60, n) \
- 144*n*delta(84, n) \
- 96*n*delta(90, n) \
- 144*n*delta(120, n) \
- 96*n*delta(210, n); fi; end;
[seq(f(n), n=1..100)]; # N. J. A. Sloane, Aug 09 2017
MATHEMATICA
del[m_, n_]:=If[Mod[n, m]==0, 1, 0]; Int[n_]:=If[n<4, 0, Binomial[n, 4] + del[2, n](-5n^3+45n^2-70n+24)/24 - del[4, n](3n/2) + del[6, n](-45n^2+262n)/6 + del[12, n]*42n + del[18, n]*60n + del[24, n]*35n - del[30, n]*38n - del[42, n]*82n - del[60, n]*330n - del[84, n]*144n - del[90, n]*96n - del[120, n]*144n - del[210, n]*96n]; Table[Int[n], {n, 1, 1000}] (* T. D. Noe, Dec 21 2006 *)
PROG
(PARI) apply( {A006561(n)=binomial(n, 4)+if(n%2==0, (n>2) + (-5*n^2+45*n-70)*n/24 + vecsum([t[2] | t<-[4, 6, 12, 18, 24, 30, 42, 60, 84, 90, 120, 210; -3/2, (262-45*n)/6, 42, 60, 35, -38, -82, -330, -144, -96, -144, -96], n%t[1]==0])*n)}, [1..44]) \\ M. F. Hasler, Aug 23 2017, edited Aug 06 2021
(Python)
def d(n, m): return not n % m
def A006561(n): return 0 if n == 2 else n*(42*d(n, 12) - 144*d(n, 120) + 60*d(n, 18) - 96*d(n, 210) + 35*d(n, 24)- 38*d(n, 30) - 82*d(n, 42) - 330*d(n, 60) - 144*d(n, 84) - 96*d(n, 90)) + (n**4 - 6*n**3 + 11*n**2 - 6*n -d(n, 2)*(5*n**3 - 45*n**2 + 70*n - 24) - 36*d(n, 4)*n - 4*d(n, 6)*n*(45*n - 262))//24 # Chai Wah Wu, Mar 08 2021
CROSSREFS
Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.
See also A101363, A292104, A292105.
See A290447 for an analogous problem on a line.
KEYWORD
easy,nonn,nice
AUTHOR
N. J. A. Sloane, Bjorn Poonen (poonen(AT)math.princeton.edu)
STATUS
approved
Consider n equally spaced points along a line and join every pair of points by a semicircle above the line; a(n) is the number of intersection points.
+10
35
0, 0, 0, 1, 5, 15, 35, 70, 124, 200, 300, 445, 627, 875, 1189, 1564, 2006, 2568, 3225, 4035, 4972, 6030, 7250, 8701, 10323, 12156, 14235, 16554, 19124, 22072, 25250, 28863, 32827, 37166, 41949, 47142, 52653, 58794, 65503, 72741, 80437
OFFSET
1,5
COMMENTS
Only intersection points above the line are counted.
a(n) <= binomial(n,4) (A000332), since that is the number of pairs of intersecting semicircles. See A290461 for the differences.
The first time a triple intersection occurs is for n=9. Two fourfold intersections occur for n=13. - Torsten Sillke, Jul 27 2017
If the line is the x-axis and the two semicircles are for (x_1,0),(x_2,0) and (x_3,0),(x_4,0) (with x_1 < x_2, x_3 < x_4, and x_1 < x_3) then they intersect if and only if x_1 < x_3 < x_2 < x_4, and the intersection point has coordinates (x,y) with x=(x_3*x_4 - x_1*x_2) / (x_3 + x_4 - x_1 - x_2) and y^2 = (x_3-x_1)*(x_4-x_1)*(x_2-x_3)*(x_4-x_2) / (x_3 + x_4 - x_1 - x_2)^2. This allows identification of distinct (and duplicate) intersection points using only rational arithmetic. - David Applegate, Aug 07 2017
Suppose x_i are integers in the range 0 <= x_i < n. Then (x,y) is an intersection point if and only if (n-1-x,y) is an intersection point. Suppose x_4 < n-1. If (x,y) is an intersection point, then (i+x,y) is an intersection point for i = 1,..,n-1-x_4. - Chai Wah Wu, Aug 09 2017
REFERENCES
Torsten Sillke, email to N. J. A. Sloane, Jul 27 2017 (giving values for a(1)-a(13)).
LINKS
Lars Blomberg, Scott R. Shannon, N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2021). Also arXiv:2009.07918.
M. F. Hasler, Illustration for a(9) = 124. (First instance where a triple intersection occurs, whence a(9) < binomial(9,4).)
M. F. Hasler, Illustration for a(9) = 124 [Another version, showing baseline]
N. J. A. Sloane, Illustration for a(5) = 5.
N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
Zahlenjagd, Winter 2010 Problem (asks for a(10)).
PROG
(PARI) A290447(n, U=[])={for(A=1, n-3, for(C=A+1, n-2, for(B=C+1, n-1, for(D=B+1, n, U=setunion(U, [[(C*D-A*B)/(C+D-A-B), (C-A)*(D-A)*(C-B)*(D-B)/(C+D-A-B)^2]]))))); #U} \\ M. F. Hasler, Aug 07 2017
(Python)
from itertools import combinations
from fractions import Fraction
def A290447(n):
p, p2 = set(), set()
for b, c, d in combinations(range(1, n), 3):
e = b + d - c
f1, f2, g = Fraction(b*d, e), Fraction(b*d*(c-b)*(d-c), e**2), (n-1)*e - 2*b*d
for i in range(n-d):
if 2*i*e < g:
p2.add((i+f1, f2))
elif 2*i*e == g:
p.add(f2)
else:
break
return len(p)+2*len(p2) # Chai Wah Wu, Aug 08 2017
CROSSREFS
See A006561 for an analogous problem on a circle.
See A290865, A290866, A290867, A290876, A332723 for further properties of these configurations.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 05 2017
EXTENSIONS
More terms from David Applegate, Aug 07 2017
STATUS
approved
Number of line segments in regular n-gon with all diagonals drawn.
+10
34
0, 1, 3, 8, 20, 42, 91, 136, 288, 390, 715, 756, 1508, 1722, 2835, 3088, 4896, 4320, 7923, 8360, 12180, 12782, 17963, 16344, 25600, 26494, 35451, 36456, 47908, 38310, 63395, 64800, 82368, 84082, 105315, 99972, 132756, 135014, 165243, 167720
OFFSET
1,3
COMMENTS
A line segment (or edge) is considered to end at any vertex where two or more chords meet.
I.e., edge count of the n-polygon diagonal intersection graph. - Eric W. Weisstein, Mar 08 2018
LINKS
N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
Eric Weisstein's World of Mathematics, Edge Count
Eric Weisstein's World of Mathematics, Polygon Diagonal Intersection Graph
FORMULA
a(n) = A007569(n) + A007678(n) - 1. - Max Alekseyev
MATHEMATICA
del[m_, n_] := Boole[Mod[n, m] == 0];
A007569[n_] :=
If[n < 4, n,
n + Binomial[n, 4] + del[2, n] (-5 n^3 + 45 n^2 - 70 n + 24)/24 -
del[4, n] (3 n/2) + del[6, n] (-45 n^2 + 262 n)/6 +
del[12, n]*42 n + del[18, n]*60 n + del[24, n]*35 n -
del[30, n]*38 n - del[42, n]*82 n - del[60, n]*330 n -
del[84, n]*144 n - del[90, n]*96 n - del[120, n]*144 n -
del[210, n]*96 n];
A007678[n_] :=
If[n < 3,
0, (n^4 - 6 n^3 + 23 n^2 - 42 n + 24)/24 +
del[2, n] (-5 n^3 + 42 n^2 - 40 n - 48)/48 - del[4, n] (3 n/4) +
del[6, n] (-53 n^2 + 310 n)/12 + del[12, n] (49 n/2) +
del[18, n]*32 n + del[24, n]*19 n - del[30, n]*36 n -
del[42, n]*50 n - del[60, n]*190 n - del[84, n]*78 n -
del[90, n]*48 n - del[120, n]*78 n - del[210, n]*48 n];
a[n_] := A007569[n] + A007678[n] - 1;
Array[a, 40] (* Jean-François Alcover, Sep 07 2017, after Max Alekseyev, using T. D. Noe's code for A007569 and A007678 *)
CROSSREFS
Sequences related to chords in a circle: A001006, A054726, A006533, A006561, A006600, A007569, A007678. See also entries for chord diagrams in Index file.
KEYWORD
easy,nice,nonn
AUTHOR
STATUS
approved
Number of polygons formed by connecting all the 4n points on the perimeter of an n X n square by straight lines; a(0) = 0 by convention.
+10
33
0, 4, 56, 340, 1120, 3264, 6264, 13968, 22904, 38748, 58256, 95656, 120960, 192636, 246824, 323560, 425408, 587964, 682296, 932996, 1061232, 1327524, 1634488, 2049704, 2227672, 2806036, 3275800, 3810088, 4307520, 5298768
OFFSET
0,2
COMMENTS
There are n+1 points on each side of the square, but that counts the four corners twice, so there are a total of 4n points on the perimeter. - N. J. A. Sloane, Jan 23 2020
a(n) is always divisible by 4, by symmetry. If n is odd, a(n) is divisible by 8.
From Michael De Vlieger, Feb 19-20 2015: (Start)
For n > 0, the vertices of the bounding square generate diametrical bisectors that cross at the center. Thus each diagram has fourfold symmetry.
For n > 0, an orthogonal n X n grid is produced by corresponding horizontal and vertical points on opposite sides.
Terms {1, 3, 9} are not congruent to 0 (mod 8).
Number of edges: {0, 8, 92, 596, 1936, 6020, 11088, 26260, 42144, 72296, 107832, ...}. See A331448. (End)
LINKS
Lars Blomberg, Scott R. Shannon, and N. J. A. Sloane, Graphical Enumeration and Stained Glass Windows, 1: Rectangular Grids, (2021); Also on arXiv, arXiv:2009.07918 [math.CO], 2020.
B. Poonen and M. Rubinstein (1998) The Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics 11(1), pp. 135-156, doi:10.1137/S0895480195281246, arXiv:math.MG/9508209 (has fewer typos than the SIAM version)
Scott R. Shannon, Image for n = 2.
Scott R. Shannon, Image for n = 3.
Scott R. Shannon, Image for n = 4.
Scott R. Shannon, Image for n = 5.
Scott R. Shannon, Image for n = 10.
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 20.
FORMULA
No formula is presently known. - N. J. A. Sloane, Feb 04 2020
EXAMPLE
For n = 3, the perimeter of the square contains 12 points:
* * * *
* *
* *
* * * *
Connect each point to every other point with a straight line inside the square. Then count the polygons (or regions) that have formed. There are 340 polygons, so a(3) = 340.
For n = 1, the full picture is:
*-*
|X|
*-*
The lines form four triangular regions, so a(1) = 4.
For n = 0, the square can be regarded as consisting of a single point, producing no lines or polygons, and so a(0) = 0.
CROSSREFS
Cf. A092098 (triangular analog), A331448 (edges), A331449 (points), A334699 (k-gons).
For the circular analog see A006533, A007678.
KEYWORD
nonn,more
AUTHOR
Johan Westin, Feb 12 2015
EXTENSIONS
a(11)-a(29) from Hiroaki Yamanouchi, Feb 23 2015
Offset changed by N. J. A. Sloane, Jan 23 2020
STATUS
approved
Number of edges formed by drawing the lines connecting any two of the 2*(n+2) perimeter points of a 3 X (n+1) rectangular grid of points (or equally, a 2 X n grid of squares).
+10
25
28, 92, 240, 508, 944, 1548, 2520, 3754, 5392, 7528, 10296, 13570, 17844, 22768, 28584, 35704, 44048, 53380, 64728, 77292, 91500, 107828, 126408, 146772, 170080, 195580, 223764, 255010, 289792, 326996, 369320, 414908, 463880, 517724, 575404, 637530, 706172
OFFSET
1,1
COMMENTS
Triangles A331452, A331453, A331454 do not have formulas, except for column 1. The column 2 sequences, A331763, A331765, A331766, are therefore the next ones to attack.
See A331452 for other illustrations.
LINKS
N. J. A. Sloane (in collaboration with Scott R. Shannon), Art and Sequences, Slides of guest lecture in Math 640, Rutgers Univ., Feb 8, 2020. Mentions this sequence.
CROSSREFS
Column 2 of A331454.
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Scott R. Shannon, Mar 11 2020
a(21) and beyond from Lars Blomberg, Apr 28 2020
STATUS
approved

Search completed in 0.069 seconds