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Outline
1. Counting intersection points of diagonals in 

an n-gon, or of semicircles on a line

2. Iterating number-theoretic functions. What 
happens when we start with n and 
repeatedly apply an operation like                   
“                                        

3. Emil Post’s Tag System {00 / 1101} 
[Postponed]

n ! f(n) =
�(n) + �(n)

2
Also John Conway’s $1000 bet

(7 parts)
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Part 3.   Emil Post’s Tag System {00 / 1101} 

S = binary word.  If S starts with 0, append 00;  if S starts 
with 1, append 1101; delete first 3 bits.  Repeat.

Emil Post, 1930’s; Marvin Minsky, 1960’s, + ...

Open: are there words S which blow up?
S = (100)k very interesting.  All die or cycle for k < 110.

Lars Blomberg, Sept 9, 2017: for k=110, after 4.10^12 steps 
reached length 10^7

Yesterday. Lars Blomberg: k=110 died after 14 days, 
43913328040672 steps; longest word had length 

31299218

(A284119, A291792)
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Lars Blomberg, Oct 4 2017
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1.    Counting 
Intersections of Chords 

or Semicircles
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France 1967

Amiens
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1a.    Counting Intersection
points of regular polygons
with all diagonals drawn 

A6561
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9/14/2017 Illustration of oeis.org/A006561 - (c) 2017 by M. F. Hasler

https://oeis.org/A006561/a006561.html 1/1

Illustration of A006561(n): Enter the number of points, n = 30  -‐‑  + . 
Radius of blobs = 1 , Radius of circle = 300 , Draw circle: .

A6561(30) = 16801A6561
n = 30 points
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A6561:  1, 5, 13, 35, 49, 126, ...
Number of (internal) intersection points

of all diagonals
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�4(n) = 1 i↵ 4 divides n, . . .

Solved by Bjorn Poonen and Michael 
Rubinstein, SIAM J Disc. Math., 1998:

a(n)  is

where

In particular, if n is odd, a(n) =

✓
n

4

◆

A6561
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U =
u

2⇡
, etc.

Lemma: NASC for 3 diagonals
to meet at a point: 

sin⇡U sin⇡V sin⇡W = sin⇡X sin⇡Y sin⇡Z

U + V +W +X + Y + Z = 1

Equivalently:
9 rationals ↵1, . . . ,↵6 such that

X

j=1..6

�
ei⇡↵j + e�i⇡↵j

�
= 1

↵1 + · · ·+ ↵6 = 1

Here, ↵1 = V +W � U � 1

2
, etc.

[A trigonometric diophantine equation, solvable: Conway and Jones (1976)]
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A6561
(cont.)

n=8: colored version from Maximilian Hasler
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Problem 1b:  Take n equally-spaced 
points on a line and join by 

semi-circles: how many intersection 
points?

The math problems web site http://www.zahlenjagd.at

Problem for Winter 2010 says:

A290447
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6 points on line, A290447(6) = 15 intersection points

[Torsten Sillke, Maximilan Hasler]
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10 points on line, A290447(10) = 200 intersection points
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David Applegate found first 500 terms:

0, 0, 0, 1, 5, 15, 35, 70, 124, 200, 300, 445, 627, 
875, 1189, 1564, 2006, 2568, 3225, ... A290447
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A290447 continued

No formula or recurrence is known

a(n) 
✓
n

4

◆
with = i↵ n  8

Comparison 1a. polygon 1b. semicircles

# points A6561 A290447

# regions A6533 A290865

# k-fold inter. points A292105 A290867
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Part 2.  Iteration of 
number-theoretic 

functions 
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Starting at n, iterate k        f(k), what happens?

2a.

2b.

2c.

2d.

2e.

2f.

�(k)� k

�(k)� 1

( (n) + �(n))/2

(�(n) + �(n))/2

f(8)=23, f(9)=32, f(24)=233
f(8)=222, f(9)=33, f(24)=2223

(aliquot sequences)
(Erdos)

(Erdos)

(Erdos)
(Conway)

(Heleen)

f(k)

2g.      Power trains                            (Conway)
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2a:   Aliquot Sequences
(The classic problem)

Let    (n) = sum of divisors of n  (A203)
s(n) =    (n) - n = sum of “aliquot parts” of n (A1065)

�

�

Start with n, iterate k       s(k), what happens?
30 - 42 - 54 - 66 - 78 - 90 - 144 - 259 - 45 - 33 - 15 - 9 - 4 - 3 - 1 - 0

16 terms in trajectory, so A98007(30) = 16.

6 is fixed (a perfect number), so A98007(6) = 1

Escape clause: A98007(n) = -1 if trajectory is infinite

Old conjecture (Catalan): all numbers go to 0 or cycle.
New conjecture: almost all numbers have an infinite trajectory

Not a single immortal example is known for cetain!
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276 is the first number that seems to have an infinite 
trajectory (see A8892):

276, 396, 696, 1104, 1872, 3770, 3790, 3050, 2716, 2772, 
5964, 10164, 19628, 19684, 22876, 26404, 30044, 33796, 
38780, 54628, 54684, 111300, 263676, 465668, 465724, 
465780, 1026060, 2325540, 5335260,...

After 2090 terms, this has reached a 208-digit number 
which has not yet been factored.

Iterate n        s(n) = sigma(n) - n (cont.)
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�(n) = n
Y

p|n

✓
1� 1

p

◆

 (n) = n
Y

p|n

✓
1 +

1

p

◆

BLACKBOARD

Euler totient,  A10

Dedekind psi,  A1615

f(n) =
 (n) + �(n)

2
A291784
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2b, 2c, 2d:   Three Problems from 
Erdos and Guy (UPNT)

Iterate

k ! �(k) � 1

k !  (k) + �(k)

2

k ! �(k) + �(k)

2

(2b)

(2c)

(2d)

starting at n, what happens?

�(k) = sum of divisors (A203)

�(k) = k
Y

p|k

(1 � 1

p
)

(A10)
 (k) = k

Y

p|k

(1 +
1

p
)

(Dedekind psi fn., A1615)
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Problem 2b: Iterate f(k) = sigma(k)-1

k>1: sigma(k) >= k+1, = iff k = prime

So either we reach a prime (= fixed point) or it blows up

Erdos conjectured that we always reach a prime

2 0
3 0
4 6 11 2
5 0
6 11 1
7 0
8 14 23 2
9 12 27 39 55 71 5

n

red = prime reached

steps

Prime reached (or -1):   A39654
Steps:   A39655

trajectory
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Problem 2b: Iterate f(k) = sigma(k)-1   (cont.)

Numbers that take a record number of steps to reach a 
prime:   (A292114)

Q1:    What are these numbers?

Q2:  Do we always reach a prime,  or is there a 
number that blows up?

2, 4, 9, 121, 301, 441, 468, 3171, 8373, 13440, 
16641, 16804, 83161, 100652, 133200, ...
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starting at n, what happens?

k !  (k) + �(k)

2
(2c):Problem Iterate

f(k) =
k

2

0

@
Y

p|k

(1 +
1

p
) +

Y

p|k

(1 � 1

p
)

1

A

Prime powers

So either we reach a prime power or we increase for ever.

are fixed, otherwise we grow.pt, t � 0,

BUT NOW WE CAN INCREASE FOR EVER !

Thursday, October 5, 17



Problem 2c (cont.)  Iterate f(n) =
 (n) + �(n)

2
Numbers that blow up: 

45, 48, 50, ..., 147, 152, ... (A291787)

Theorem (R. C. Wall, 1985)
The trajectory of 1488 is infinite:

45 through 147 contain 1488
152 merges after 389 steps:
b389 = 2104.3.31, thereafter bt = at.2

100

Trajectories of:
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Problem 2c (cont.)  Iterate f(n) =
 (n) + �(n)

2

Conjecture (weak):

If a number blows up, its trajectory 
merges with that of 45  (A291787)
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starting at n, what happens?

(2d):Problem Iterate n ! f(n) =
�(n) + �(n)

2

A292108 = no. of steps to reach 1, a prime 
(fixed point), or a fraction (dies),  or -1 if immortal;

Calculations on this problem by 
Hans Havermann, Sean Irvine, Hugo Pfoertner
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BLACK-
BOARD

A292108

f(n) =
�(n) + �(n)

2
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Problem 2d (cont.) n ! f(n) =
�(n) + �(n)

2
-    n = 1 or a prime: fixed points
-    Fact:  For n>2,   sigma(n)+phi(n) is odd 

iff  n = square or twice a square 
-   n = square or twice a square, n>2, dies in one step

-    A290001: reaches a fraction and dies 
in more than one step:

12, 14, 15, 20, 24, 28, 33, 34, 35, 42, 48, 54, 55, 56, 62, 63, 69, 70, ... WHAT ARE 
THESE NUMBERS?

-    A291790: apparently immortal:
270, 290, 308, 326, 327, 328, 352, 369, 393, 394, 
395, 396, 410, 440, 458, 459, 465, 496, 504, ...

(blue: trajectories appear to be disjoint)
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From Sean Irvine
Immortal trajectories?
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Problem 2d (cont.) n ! f(n) =
�(n) + �(n)

2

270, 396, 606, 712, 851, 852, 1148, 1416, 2032, 2488, 2960, 
4110, 5512, 6918, 8076, 10780, 16044, 23784, 33720, 55240, 
73230, 97672, 118470, 169840, 247224, 350260, 442848, 
728448, 1213440, 2124864, 4080384, 8159616, 13515078, 
15767596, 18626016, 29239504, 39012864, ...

after 515 terms it has reached a 142-digit number

766431583175462762130381515662187930626060
289448722569860560024833735066967138095365
846432527969442969920899339325281010666474

4901740672517008
and it is still growing

A291789:    Trajectory of 270:
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9/7/2017 plot.png

https://mail.google.com/mail/u/0/?shva=1#inbox/15e4b794bcadcb45?projector=1 1/1

Sean Irvine: Trajectory of 270
Red: ratio of successive terms Green: cumulative mean of that ratio Blue: powers of 2

NOTE THE HIGH 
POWERS OF 2!
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Problem 2d (cont.) n ! f(n) =
�(n) + �(n)

2

The question that kept me awake at night:
HOW DID 270 KNOW IT WAS DESTINED TO BE 

IMMORTAL?
What was the magic property that guaranteed that it 

would never reach a fraction or a prime?
(We don’t know for sure that is true, but it seems certain)

It was just lucky, that’s all!
Answer:

It won the lottery.
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Problem 2d (cont.) f(n) =
�(n) + �(n)

2

Andrew Booker (Bristol):  It appears that almost all 
numbers are immortal

Consider a term s = f(r) in a trajectory.
3 possibilities:  f(s) = fraction (dies), 

prime (fixed point), or composite (lives)

If s is even, no worries   [f(s) is integer unless 
s = 2.square or 4.square, rare]

If s = f(r) is odd, dangerous. Implies �(r) + �(r)

is twice an odd number(A292763)
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Andrew
Booker’s 
argument
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Problem 2f
f(8)=23, f(9)=32, f(24)=233A080670
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NEWS FLASH:   JUNE 5 2017
Math Prof loses $1000 bet!

n 1 2 3 4 5 6 7 8 9 10 11 12 ..
.

20

f(n) 1 2 3 22 5 23 7 23 32 25 11 223 ..
.

225

F(n) 1 2 3 211 5 23 7 23 2213 2213 11 223 ..
.

A080670

A195264

John Conway, 2014:  Start with n, repeatedly apply f until 
reach 1 or a prime. Offers $1000 for proof or disproof.

Still growing after110 terms, see  A195265 

James Davis, June 5 2017:

13532385396179  = 13.53^2.3853.96179 

Fixed but not a prime!

If n = pe11 pe22 · · · then f(n) = p1e1p2e2 · · · but omit any ei = 1.
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A195264 cont.
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As of June 17 2017, based on work of Chai Wah Wu (IBM) and David J. Seal:
there are two known loops of length 2; 

234 is first number that seems to blow up (see A287878).
No, later Sean Irvine found at step 104,

234 reaches 350743229748317519260857777660944018966290406786641 

All n <12389 end at a fixed point or a loop of length 2.
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Note this is monotonic so cannot cycle

Problem 2f. f(8)=222, f(9)=33, f(24)=2223

There has been essentially no progress in 27 years
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POWER TRAINS:  John Conway, 2007

If n = abcde . . . then f(n) = abcde . . . with 00 = 1

f(24) = 2^4 = 16,   f(623) = 6^2.3 = 108, ... (A133500)

The known fixed points are

1, . . . , 9, 2592 = 25.92, and

n = 246 36 510 72 = 24547284284866560000000000

f(n) = 24 54 72 84 28 48 66 56 = n

Conjecture: no other fixed points (none below 10^100)

(A135385)

Perhaps all these problems have only 
finitely many (primitive) exceptions?

Problem 2g.
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Like these problems?

Become a volunteer OEIS editor!

Contact Neil Sloane,   njasloane@gmail.com
or (easier) president@oeis.org

OEIS.org

New sequence?  Register, submit it!

Join Sequence Fans Mailing List
Thursday, October 5, 17
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