Displaying 1-10 of 21 results found.
Numbers k such that both k and k + 1 are Niven numbers in base 2 ( A049445).
+10
32
1, 20, 68, 80, 115, 155, 184, 204, 260, 272, 284, 320, 344, 355, 395, 404, 424, 464, 555, 564, 595, 623, 624, 636, 664, 675, 804, 835, 846, 847, 864, 875, 888, 904, 972, 1028, 1040, 1075, 1088, 1124, 1164, 1182, 1211, 1224, 1239, 1266, 1280, 1304, 1315, 1424
COMMENTS
Cai proved that there are infinitely many runs of 4 consecutive Niven numbers in base 2. Therefore this sequence is infinite.
REFERENCES
József Sándor and Borislav Crstici, Handbook of Number theory II, Kluwer Academic Publishers, 2004, Chapter 4, p. 382.
EXAMPLE
20 is a term since 20 and 20 + 1 = 21 are both Niven numbers in base 2.
MATHEMATICA
binNivenQ[n_] := Divisible[n, Total @ IntegerDigits[n, 2]]; bnq1 = binNivenQ[1]; seq = {}; Do[bnq2 = binNivenQ[k]; If[bnq1 && bnq2, AppendTo[seq, k - 1]]; bnq1 = bnq2, {k, 2, 10^4}]; seq
PROG
(Magma) f:=func<n|n mod &+Intseq(n, 2) eq 0>; a:=[]; for k in [1..1500] do if forall{m:m in [0..1]|f(k+m)} then Append(~a, k); end if; end for; a; // Marius A. Burtea, Jan 03 2020
(Python)
def sbd(n): return sum(map(int, str(bin(n)[2:])))
def niv2(n): return n%sbd(n) == 0
def aupto(nn): return [k for k in range(1, nn+1) if niv2(k) and niv2(k+1)]
Numbers k such that both k and k + 1 are Niven numbers.
+10
31
1, 2, 3, 4, 5, 6, 7, 8, 9, 20, 80, 110, 111, 132, 152, 200, 209, 224, 399, 407, 440, 480, 510, 511, 512, 629, 644, 735, 800, 803, 935, 999, 1010, 1011, 1014, 1015, 1016, 1100, 1140, 1160, 1232, 1274, 1304, 1386, 1416, 1455, 1520, 1547, 1651, 1679, 1728, 1853
COMMENTS
Cooper and Kennedy proved that there are infinitely many runs of 20 consecutive Niven numbers. Therefore this sequence is infinite.
REFERENCES
Jean-Marie De Koninck, Those Fascinating Numbers, American Mathematical Society, 2009, p. 36, entry 110.
EXAMPLE
1 is a term since 1 and 1 + 1 = 2 are both Niven numbers.
MATHEMATICA
nivenQ[n_] := Divisible[n, Total @ IntegerDigits[n]]; nq1 = nivenQ[1]; seq = {}; Do[nq2 = nivenQ[k]; If[nq1 && nq2, AppendTo[seq, k - 1]]; nq1 = nq2, {k, 2, 2000}]; seq
SequencePosition[Table[If[Divisible[n, Total[IntegerDigits[n]]], 1, 0], {n, 2000}], {1, 1}][[;; , 1]] (* Harvey P. Dale, Dec 24 2023 *)
PROG
(Magma) f:=func<n|n mod &+Intseq(n) eq 0>; a:=[]; for k in [1..2000] do if forall{m:m in [0..1]|f(k+m)} then Append(~a, k); end if; end for; a; // Marius A. Burtea, Jan 03 2020
(Python)
from itertools import count, islice
def agen(): # generator of terms
h1, h2 = 1, 2
while True:
if h2 - h1 == 1: yield h1
h1, h2 = h2, next(k for k in count(h2+1) if k%sum(map(int, str(k))) == 0)
CROSSREFS
Cf. A005349, A060159, A141769, A154701, A328205, A328209, A328213, A330713, A330928, A330929, A330930, A330931.
Numbers k such that k and k+1 are both primorial base Niven numbers ( A333426).
+10
18
1, 8, 24, 32, 44, 64, 65, 132, 212, 224, 244, 245, 296, 368, 424, 425, 468, 560, 656, 720, 728, 737, 869, 1056, 1088, 1416, 1572, 1728, 2100, 2312, 2324, 2344, 2345, 2524, 2525, 2568, 2600, 2672, 2820, 2960, 3032, 3132, 3156, 3200, 3288, 3392, 3444, 4096, 4424
EXAMPLE
1 is a term since 1 and 2 are both primorial base Niven numbers.
MATHEMATICA
max = 6; bases = Prime @ Range[max, 1, -1]; nmax = Times @@ bases - 1; primNivenQ[n_] := Divisible[n, Plus @@ IntegerDigits[n, MixedRadix[bases]]]; q1 = primNivenQ[1]; seq = {}; Do[q2 = primNivenQ[n]; If[q1 && q2, AppendTo[seq, n - 1]]; q1 = q2, {n, 2, nmax}]; seq
Numbers k such that k and k+1 are both base phi Niven numbers ( A334308).
+10
16
1, 15, 35, 90, 95, 231, 644, 728, 944, 1016, 1110, 1331, 1629, 1736, 1770, 1899, 1925, 2232, 2255, 2384, 2456, 2629, 2652, 2760, 3104, 3176, 3288, 3444, 3729, 3789, 3860, 4410, 4415, 4509, 4544, 4718, 4939, 4960, 5229, 5239, 5489, 5789, 5831, 5984, 6039, 6111
EXAMPLE
1 is a term since 1 and 2 are both base phi Niven numbers.
MATHEMATICA
phiDigSum[1] = 1; phiDigSum[n_] := Plus @@ RealDigits[n, GoldenRatio, 2*Ceiling[ Log[GoldenRatio, n] ]][[1]]; phiNivenQ[n_] := Divisible[n, phiDigSum[n]]; Select[Range[6000], phiNivenQ[#] && phiNivenQ[# + 1] &]
Numbers k such that k and k + 1 are both Niven numbers in base 3/2 ( A342426).
+10
16
1, 168, 459, 1817, 2196, 2197, 2655, 3128, 3280, 3699, 4199, 4575, 4927, 5184, 5795, 6600, 7215, 7259, 7656, 7657, 8448, 9636, 11304, 11339, 12492, 14160, 14175, 14424, 14805, 15624, 15625, 16335, 16336, 16925, 17802, 19170, 20349, 20811, 21624, 21735, 22197
EXAMPLE
168 is a term since both 168 and 169 are Niven numbers in base 3/2. 168 in base 3/2 is 2120220210 and 2+1+2+0+2+2+0+2+1+0 = 12 is a divisor of 168. 169 in base 3/2 is 2120220211 and 2+1+2+0+2+2+0+2+1+1 = 13 is a divisor of 169.
MATHEMATICA
s[0] = 0; s[n_] := s[n] = s[2*Floor[n/3]] + Mod[n, 3]; q[n_] := Divisible[n, s[n]]; Select[Range[22000], q[#] && q[# + 1] &]
Numbers k such that k and k + 1 are both Gray-code Niven numbers ( A344341).
+10
15
1, 2, 3, 6, 7, 8, 14, 15, 27, 30, 31, 32, 39, 44, 51, 56, 62, 63, 75, 99, 104, 111, 123, 126, 127, 128, 135, 144, 155, 159, 174, 175, 184, 185, 195, 204, 207, 215, 224, 231, 234, 235, 243, 244, 248, 254, 255, 264, 275, 284, 294, 300, 304, 305, 315, 335, 354, 375
EXAMPLE
1 is a term since 1 and 2 are both Gray-code Niven numbers.
MATHEMATICA
gcNivenQ[n_] := Divisible[n, DigitCount[BitXor[n, Floor[n/2]], 2, 1]]; Select[Range[400], And @@ gcNivenQ[# + {0, 1}] &]
Numbers k such that k and k + 1 are both Lucas-Niven numbers ( A351714).
+10
13
1, 2, 3, 6, 7, 10, 11, 29, 39, 47, 57, 80, 123, 129, 134, 152, 159, 170, 176, 199, 206, 245, 279, 326, 384, 387, 398, 404, 521, 531, 543, 560, 579, 615, 644, 651, 684, 755, 843, 849, 854, 872, 879, 890, 896, 944, 1024, 1052, 1064, 1070, 1071, 1095, 1350, 1382
EXAMPLE
6 is a term since 6 and 7 are both Lucas-Niven numbers: the minimal Lucas representation of 6, A130310(6) = 1001, has 2 1's and 6 is divisible by 2, and the minimal Lucas representation of 7, A130310(7) = 10000, has one 1 and 7 is divisible by 1.
MATHEMATICA
lucasNivenQ[n_] := Module[{s = {}, m = n, k = 1}, While[m > 0, If[m == 1, k = 1; AppendTo[s, k]; m = 0, If[m == 2, k = 0; AppendTo[s, k]; m = 0, While[LucasL[k] <= m, k++]; k--; AppendTo[s, k]; m -= LucasL[k]; k = 1]]]; Divisible[n, Plus @@ IntegerDigits[Total[2^s], 2]]]; Select[Range[1400], And @@ lucasNivenQ/@{#, #+1} &]
CROSSREFS
Similar sequences: A330927, A328205, A328209, A328213, A330931, A331086, A333427, A334309, A331820, A342427, A344342, A351720.
Numbers k such that k and k + 1 are both lazy-Lucas-Niven numbers ( A351719).
+10
13
1, 175, 216, 399, 656, 729, 737, 759, 1000, 1991, 2716, 2820, 2925, 3970, 4068, 4224, 4499, 4641, 5316, 5819, 6565, 6720, 6902, 7890, 9840, 10751, 11843, 12194, 12614, 13034, 13272, 14909, 15483, 15495, 16029, 17234, 17444, 17731, 18074, 18885, 19305, 19669, 20188
EXAMPLE
175 is a term since 175 and 176 are both lazy-Lucas-Niven numbers: the maximal Lucas representation of 175, A130311(175) = 1110110101, has 7 1's and 175 is divisible by 5, and the maximal Lucas representation of 176, A130311(7) = 1110110111, has 8 1's and 176 is divisible by 8.
MATHEMATICA
lazy = Select[IntegerDigits[Range[10^6], 2], SequenceCount[#, {0, 0}] == 0 &]; t = Total[#*Reverse@LucasL[Range[0, Length[#] - 1]]] & /@ lazy; s = FromDigits /@ lazy[[TakeWhile[Flatten[FirstPosition[t, #] & /@ Range[Max[t]]], NumberQ]]]; SequencePosition[Divisible[Range[Length[s]], Plus @@@ IntegerDigits[s]], {True, True}][[;; , 1]]
CROSSREFS
Similar sequences: A330927, A328205, A328209, A328213, A330931, A331086, A333427, A334309, A331820, A342427, A344342, A351715.
Numbers k such that k and k+1 are both tribonacci-Niven numbers ( A352089).
+10
13
1, 6, 7, 12, 13, 20, 26, 27, 39, 68, 75, 80, 81, 87, 115, 128, 135, 149, 176, 184, 185, 195, 204, 215, 224, 230, 236, 243, 264, 278, 284, 291, 344, 364, 399, 447, 506, 507, 519, 548, 555, 560, 575, 595, 615, 635, 656, 664, 665, 684, 704, 725, 744, 777, 804, 824
EXAMPLE
6 is a term since 6 and 7 are both tribonacci-Niven numbers: the minimal tribonacci representation of 6, A278038(6) = 110, has 2 1's and 6 is divisible by 2, and the minimal tribonacci representation of 7, A278038(7) = 1000, has one 1 and 7 is divisible by 1.
MATHEMATICA
t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; q[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; Divisible[n, DigitCount[Total[2^(s - 1)], 2, 1]]]; Select[Range[1000], q[#] && q[# + 1] &]
CROSSREFS
Similar sequences: A330927, A328205, A328209, A328213, A330931, A331086, A333427, A334309, A331820, A342427, A344342, A351715, A351720.
Numbers k such that k and k+1 are both lazy-tribonacci-Niven numbers ( A352107).
+10
11
1, 20, 39, 75, 115, 135, 155, 175, 176, 184, 204, 215, 264, 567, 684, 704, 725, 791, 846, 872, 1089, 1104, 1115, 1134, 1183, 1184, 1211, 1224, 1407, 1575, 1840, 1880, 2064, 2075, 2151, 2191, 2232, 2259, 2260, 2415, 2529, 2583, 2624, 2780, 2820, 2848, 2888, 2988
EXAMPLE
20 is a term since 20 and 21 are both lazy-tribonacci-Niven numbers: the maximal tribonacci representation of 20, A352103(20) = 10111, has 4 1's and 20 is divisible by 4, and the maximal tribonacci representation of 21, A352103(20) = 11001, has 3 1's and 21 is divisible by 3.
MATHEMATICA
t[1] = 1; t[2] = 2; t[3] = 4; t[n_] := t[n] = t[n - 1] + t[n - 2] + t[n - 3]; trib[n_] := Module[{s = {}, m = n, k}, While[m > 0, k = 1; While[t[k] <= m, k++]; k--; AppendTo[s, k]; m -= t[k]; k = 1]; IntegerDigits[Total[2^(s - 1)], 2]]; q[n_] := Module[{v = trib[n]}, nv = Length[v]; i = 1; While[i <= nv - 3, If[v[[i ;; i + 3]] == {1, 0, 0, 0}, v[[i ;; i + 3]] = {0, 1, 1, 1}; If[i > 3, i -= 4]]; i++]; i = Position[v, _?(# > 0 &)]; If[i == {}, False, Divisible[n, Total[v[[i[[1, 1]] ;; -1]]]]]]; Select[Range[3000], q[#] && q[# + 1] &]
CROSSREFS
Similar sequences: A330927, A328205, A328209, A328213, A330931, A331086, A333427, A334309, A331820, A342427, A344342, A351715, A351720, A352090.
Search completed in 0.090 seconds
|