[go: up one dir, main page]

login
Search: a322278 -id:a322278
     Sort: relevance | references | number | modified | created      Format: long | short | data
Array read by antidiagonals: T(n,k) is the number of graphs on n labeled nodes, each node being colored with one of k colors, where no edge connects two nodes of the same color.
+10
12
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 6, 1, 0, 1, 4, 15, 26, 1, 0, 1, 5, 28, 123, 162, 1, 0, 1, 6, 45, 340, 1635, 1442, 1, 0, 1, 7, 66, 725, 7108, 35043, 18306, 1, 0, 1, 8, 91, 1326, 20805, 254404, 1206915, 330626, 1, 0, 1, 9, 120, 2191, 48486, 1058885, 15531268, 66622083, 8488962, 1, 0
OFFSET
0,8
COMMENTS
Not all colors need to be used.
LINKS
R. C. Read, The number of k-colored graphs on labelled nodes, Canad. J. Math., 12 (1960), 410-414.
R. C. Read and E. M. Wright, Colored graphs: A correction and extension, Canad. J. Math. 22 1970 594-596.
FORMULA
T(n,k) = n!*2^binomial(n,2) * [x^n](Sum_{i>=0} x^i/(i!*2^binomial(i,2)))^k.
T(n,k) = Sum_{j=0..k} binomial(k,j)*j!*A058843(n,j).
EXAMPLE
Array begins:
===============================================================
n\k| 0 1 2 3 4 5 6
---+-----------------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 0 1 2 3 4 5 6 ...
2 | 0 1 6 15 28 45 66 ...
3 | 0 1 26 123 340 725 1326 ...
4 | 0 1 162 1635 7108 20805 48486 ...
5 | 0 1 1442 35043 254404 1058885 3216486 ...
6 | 0 1 18306 1206915 15531268 95261445 386056326 ...
7 | 0 1 330626 66622083 1613235460 15110296325 83645197446 ...
...
MATHEMATICA
nmax = 10;
T[n_, k_] := n!*2^Binomial[n, 2]*SeriesCoefficient[Sum[ x^i/(i!* 2^Binomial[i, 2]), {i, 0, nmax}]^k, {x, 0, n}];
Table[T[n - k, k], {n, 0, nmax}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Sep 23 2019 *)
PROG
(PARI)
M(n)={
my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n));
my(q=sum(j=0, n, x^j*j!*2^binomial(j, 2)) + O(x*x^n));
matconcat([1, Mat(vector(n, k, Col(serconvol(q, p^k))))]);
}
my(T=M(7)); for(n=1, #T, print(T[n, ]))
CROSSREFS
Columns k=0..4 are A000007, A000012, A047863, A191371, A223887.
Main diagonal gives A372920.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Dec 01 2018
STATUS
approved
Array read by antidiagonals: T(n,k) is the number of connected graphs on n labeled nodes, each node being colored with one of k colors, where no edge connects two nodes of the same color.
+10
8
1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 2, 0, 0, 1, 4, 6, 6, 0, 0, 1, 5, 12, 42, 38, 0, 0, 1, 6, 20, 132, 618, 390, 0, 0, 1, 7, 30, 300, 3156, 15990, 6062, 0, 0, 1, 8, 42, 570, 9980, 136980, 668526, 134526, 0, 0, 1, 9, 56, 966, 24330, 616260, 10015092, 43558242, 4172198, 0, 0
OFFSET
0,8
COMMENTS
Not all colors need to be used.
LINKS
R. C. Read, E. M. Wright, Colored graphs: A correction and extension, Canad. J. Math. 22 1970 594-596.
FORMULA
k-th column is the logarithmic transform of the k-th column of A322280.
E.g.f of k-th column: 1 + log(Sum_{n>=0} A322280(n,k)*x^n/n!).
EXAMPLE
Array begins:
===============================================================
n\k| 0 1 2 3 4 5 6
---+-----------------------------------------------------------
0 | 1 1 1 1 1 1 1 ...
1 | 0 1 2 3 4 5 6 ...
2 | 0 0 2 6 12 20 30 ...
3 | 0 0 6 42 132 300 570 ...
4 | 0 0 38 618 3156 9980 24330 ...
5 | 0 0 390 15990 136980 616260 1956810 ...
6 | 0 0 6062 668526 10015092 65814020 277164210 ...
7 | 0 0 134526 43558242 1199364852 11878194300 67774951650 ...
...
PROG
(PARI)
M(n)={
my(p=sum(j=0, n, x^j/(j!*2^binomial(j, 2))) + O(x*x^n));
my(q=sum(j=0, n, x^j*2^binomial(j, 2)) + O(x*x^n));
my(W=Mat(vector(n, k, Col(serlaplace(1 + log(serconvol(q, p^k)))))));
matconcat([1, W]);
}
my(T=M(7)); for(n=1, #T, print(T[n, ]))
CROSSREFS
Columns k=2..5 are A002027, A002028, A002029, A002030.
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Dec 01 2018
STATUS
approved
Number of ways to choose a stable partition of a simple connected graph with n vertices.
+10
7
1, 1, 1, 7, 141, 6533, 631875, 123430027, 48659732725, 39107797223409, 64702785181953175, 221636039917857648631, 1575528053913118966200441, 23249384407499950496231003021, 711653666389829384034090082068939, 45128328085994437067694854477617868995
OFFSET
0,4
COMMENTS
A stable partition of a graph is a set partition of the vertices where no non-singleton edge has both ends in the same block.
LINKS
EXAMPLE
The a(3) = 7 stable partitions. The simple connected graph is on top, and below is a list of all its stable partitions.
{1,3}{2,3} {1,2}{2,3} {1,2}{1,3} {1,2}{1,3}{2,3}
-------- -------- -------- --------
{{1,2},{3}} {{1,3},{2}} {{1},{2,3}} {{1},{2},{3}}
{{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Sum[Length[Select[Subsets[Complement[Subsets[Range[n], {2}], Union@@Subsets/@stn]], And[Union@@#==Range[n], Length[csm[#]]==1]&]], {stn, sps[Range[n]]}], {n, 5}]
PROG
(PARI) \\ See A322278 for M.
seq(n)={concat([1], (M(n)*vectorv(n, i, 1))~)} \\ Andrew Howroyd, Dec 01 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 25 2018
EXTENSIONS
Terms a(7) and beyond from Andrew Howroyd, Dec 01 2018
STATUS
approved
Number of n-colored connected graphs on n labeled nodes.
(Formerly M2141 N0852)
+10
6
1, 1, 2, 24, 912, 87360, 19226880, 9405930240, 10142439229440, 24057598104207360, 125180857812868300800, 1422700916050060841779200, 35136968950395142864227532800, 1876028272361273394915958613606400, 215474119792145796020405035320528076800
OFFSET
0,3
COMMENTS
Every connected graph on n nodes can be colored with n colors in exactly n! ways, so this sequence is just n! * A001187(n). - Andrew Howroyd, Dec 03 2018
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. C. Read, E. M. Wright, Colored graphs: A correction and extension, Canad. J. Math. 22 1970 594-596.
FORMULA
a(n) = n!*A001187(n). - Andrew Howroyd, Dec 03 2018
Define M_0(k)=1, M_n(0)=0, M_n(k) = Sum_{r=0..n} C(n,r)*2^(r*(n-r))*M_r(k-1) [M_n(k) = A322280(n,k)], m_n(k) = M_n(k) -Sum_{r=1..n-1} C(n-1,r-1)*m_r(k)*M_{n-r}(k) [m_n(k) = A322279(n,k)], f_n(k) = Sum_{r=1..k} (-1)^(k-r)*C(k,r)*m_n(r). This sequence gives a(n) = f_n(n). - Sean A. Irvine, May 29 2013, edited Andrew Howroyd, Dec 03 2018
The above formula is referenced by sequences A002027-A002030, A002031. - Andrew Howroyd, Dec 03 2018
MATHEMATICA
(* b = A001187 *) b[n_] := b[n] = If[n == 0, 1, 2^(n(n-1)/2) - Sum[k* Binomial[n, k]*2^((n-k)(n-k-1)/2)*b[k], {k, 1, n-1}]/n];
a[n_] := n! b[n];
Array[a, 14] (* Jean-François Alcover, Aug 16 2019, using Alois P. Heinz's code for A001187 *)
PROG
(PARI) seq(n) = {Vec(serlaplace(serlaplace(1 + log(sum(k=0, n, 2^binomial(k, 2)*x^k/k!, O(x*x^n))))))} \\ Andrew Howroyd, Dec 03 2018
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, May 29 2013
Name clarified by Andrew Howroyd, Dec 03 2018
a(0)=1 prepended by Andrew Howroyd, Jan 05 2024
STATUS
approved
Number of 3-colored connected graphs on n labeled nodes up to permutation of the colors.
+10
3
4, 84, 2470, 108390, 7192444, 726782784, 112795368970, 27132558531330, 10196751602156944, 6022337098348167564, 5612248139616665602510, 8274349264629020203315230, 19333678744046195877906230404, 71675537050405087142116150917624, 421915518251999125756688245906168690
OFFSET
3,1
COMMENTS
Equivalently, the number of ways to choose a stable partition of a simple connected graph on n labeled nodes with 3 parts. See A322064 for the definition of stable partition.
LINKS
PROG
(PARI) \\ See A322278 for M.
{ my(N=20); M(N, 3)[3..N, 3]~ }
CROSSREFS
Column k=3 of A322278.
Cf. A058873 (not necessarily connected), A322064.
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Dec 03 2018
STATUS
approved
Number of 4-colored connected graphs on n labeled nodes up to permutation of the colors.
+10
3
38, 3140, 307390, 42747460, 9030799218, 3012940879620, 1628920258500230, 1451200592494754420, 2152262350514389189978, 5344908165470797467243700, 22297912999366719508496874990, 156537595118740106754291705258180, 1850935702258755131781978373277937218
OFFSET
4,1
COMMENTS
Equivalently, the number of ways to choose a stable partition of a simple connected graph on n labeled nodes with 4 parts. See A322064 for the definition of stable partition.
LINKS
PROG
(PARI) \\ See A322278 for M.
{ my(N=20); M(N, 4)[4..N, 4]~ }
CROSSREFS
Column k=4 of A322278.
Cf. A058873 (not necessarily connected), A322064.
KEYWORD
nonn
AUTHOR
Andrew Howroyd, Dec 03 2018
STATUS
approved

Search completed in 0.009 seconds