OFFSET
0,3
COMMENTS
A stable partition of a hypergraph or set system is a set partition of the vertices where no non-singleton edge has all its vertices in the same block.
EXAMPLE
The a(3) = 25 stable partitions of antichains on 3 vertices. The antichain is on top, and below is a list of all its stable partitions.
{1}{2}{3} {1,2,3} {1}{2,3} {1,3}{2} {1,2}{3}
-------- -------- -------- -------- --------
{{1,2,3}} {{1},{2,3}} {{1,2},{3}} {{1},{2,3}} {{1},{2,3}}
{{1},{2,3}} {{1,2},{3}} {{1,3},{2}} {{1,2},{3}} {{1,3},{2}}
{{1,2},{3}} {{1,3},{2}} {{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}}
{{1,3},{2}} {{1},{2},{3}}
{{1},{2},{3}}
.
{1,3}{2,3} {1,2}{2,3} {1,2}{1,3} {1,2}{1,3}{2,3}
-------- -------- -------- --------
{{1,2},{3}} {{1,3},{2}} {{1},{2,3}} {{1},{2},{3}}
{{1},{2},{3}} {{1},{2},{3}} {{1},{2},{3}}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
stableSets[u_, Q_]:=If[Length[u]===0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r===w||Q[r, w]||Q[w, r]], Q]]]];
Table[Sum[Length[stableSets[Complement[Subsets[Range[n]], Union@@Subsets/@stn], SubsetQ]], {stn, sps[Range[n]]}], {n, 5}]
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Nov 25 2018
STATUS
approved