[go: up one dir, main page]

login
Search: a305314 -id:a305314
     Sort: relevance | references | number | modified | created      Format: long | short | data
Alternative version of the Markov tree A327345.
+10
7
5, 13, 29, 34, 194, 433, 169, 89, 1325, 7561, 2897, 6466, 37666, 14701, 985, 233, 9077, 135137, 51641, 294685, 4400489, 1686049, 43261, 96557, 8399329, 48928105, 3276509, 1278818, 7453378, 499393, 5741, 610, 62210, 2423525, 925765, 13782649, 537169541
OFFSET
0,1
COMMENTS
The Markov tree is a complete, infinite binary tree. Vertices are labeled by triples. The root vertex is (1, 5, 2). The left child of (a, b, c) is (a, 3*a*b - c, b); its right child is (b, 3*b*c - a, c). The sequence is a triangle read by rows consisting of the middle element of each triple, which is always the largest element of the triple. Row r contains 2^r elements.
The tree contains contains exactly one representative of each class of permutation equivalent nonsingular solutions to Markov's equation, a^2 + b^2 + c^2 = 3 * a * b * c. Nonsingular solutions are those in which a, b, and c are three distinct numbers. The two singular triples (1, 1, 1) and (1, 2, 1) are omitted in this sequence.
A consequence of Markov's equation is that the recurrence for the tree may be reformulated as follows: the left child of (a, b, c) is (a, (a^2 + b^2) / c, b); its right child is (b, (b^2 + c^2) / a, c).
An open problem is to prove the uniqueness conjecture, which asserts that the largest element of a triple determines the other two.
Frobenius proposed assigning a rational number index in (0,1) to each vertex of the tree, and hence to each term in this sequence. This is the Farey index, obtained by assigning the triple (0/1, 1/2, 1/1) to the root vertex and using the following rules to assign triples to the rest of the tree: the vertex labeled (u/v, w/x, y/z) with w = u + u and x = v + z has left child (u/v, (u+w)/(v+x), w/x) and right child (w/x, (w+y)/(x+z), y/z). The Farey index is the center element of the triple. Each rational number in (0, 1) appears as the Farey index of exactly one vertex of the tree. The index of a(n) is A007305(n+2) / A007306(n+2).
A sequence of leftward steps in the tree produces odd-indexed Fibonacci numbers, A001519, which have Farey indices of the form 1 / n. A sequence of rightward steps in the tree produces odd-indexed Pell numbers, A001653, which have Farey indices of the form (n - 1) / n. A sequence of leftward steps followed by a single rightward step produces A350922, corresponding to Farey indices of the form 2 / (2 * n + 1). Alternating steps right, left, right, left, right, ... produces A064098, which corresponds to Farey indices of the form F(n) / F(n + 1), where F(n) is the n-th Fibonacci number.
REFERENCES
Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013. x+257 pp. ISBN: 978-3-319-00887-5; 978-3-319-00888-2 MR3098784.
EXAMPLE
The initial levels of the tree are as follows. (See p. 47 of Aigner's book.)
(1,5,2)
(1,13,5) (5,29,2)
(1,34,13) (13,194,5) (5,433,29) (29,169,2)
(1, (34, (13, (194, (5, (433, (29, (169,
89, 1325, 7561, 2897, 6466, 37666, 14701, 985,
,34) 13) 194) 5) 433) 29) 169) 2)
PROG
(SageMath)
def stripUpToFirst1(w):
x = w
while x % 2 == 0:
x = x // 2
return(x // 2)
def stripUpToFirst0(w):
x = w
while x % 2 == 1:
x = x // 2
if x == 0:
return(None)
else:
return(x // 2)
@CachedFunction
def markovNumber(w):
if w == None:
return(2)
elif w == 0:
return(1)
elif w == 1:
return(5)
elif w % 2 == 0:
return(3*markovNumber(stripUpToFirst1(w))*markovNumber(w//2) - markovNumber(stripUpToFirst0(w//2)))
else:
return(3*markovNumber(stripUpToFirst0(w))*markovNumber(w//2) - markovNumber(stripUpToFirst1(w//2)))
[markovNumber(w) for w in range(1, 38)]
(Python)
def Mtree(x): return(x[0], (3*x[0]*x[1])-x[2], x[1]), (x[1], (3*x[1]*x[2])-x[0], x[2])
def A368546_rowlist(maxrow):
A, B = [[(1, 5, 2)]], []
for n in range(maxrow+1):
A.append([])
for j in A[n]:
B.append(max(j))
for k in Mtree(j):
A[n+1].append(k)
return(B) # John Tyler Rascoe, Feb 09 2024
CROSSREFS
Other presentations of the Markov numbers, Markov triples, or the Markov tree: A002559, A253809, A291694, A305313, A305314, A327345.
Subsequences in the Markov tree: A001519, A001653, A350922, A064098.
Farey tree: A007305, A007306.
KEYWORD
nonn,tabf
AUTHOR
William P. Orrick, Jan 04 2024
STATUS
approved
Numbers k(n) used for Cassels's Markoff forms MF(n) corresponding to the conjectured unique Markoff triples MT(n) with maximal entry m(n) = A002559(n), for n >= 1.
+10
5
0, 1, 2, 5, 12, 13, 34, 70, 75, 89, 179, 233, 408, 507, 610, 1120, 1597, 2378, 2673, 2923, 3468, 4181, 6089, 10946, 13860, 15571, 16725, 19760, 23763, 28657, 39916, 51709, 80782, 75025, 113922, 162867, 206855, 196418, 249755, 353702
OFFSET
1,3
COMMENTS
For these Markoff forms see Cassels, p. 31. A link to the two original Markoff references is given in A305308.
MF(n) = f_{m(n)}(x, y) = m(n)*F_{m(n)}(x, y) = m(n)*x^2 + (3*m(n) - 2*k(n))*x*y + (l(n) - 3*k(n))*y^2, with the Markoff number m = m(n) = A002559(n) and l(n) = (k(n)^2 + 1)/m(n), for n >= 1.
Every m(n) is proved to appear as largest member of a Markoff triple MT(n) = (m_1(n), m_2(n), m(n)), with positive integers m_1(n) < m_2(n) < m(n) for n >= 3 (MT(1) = (1, 1, 1) and MT(2) = (1, 1, 2)) satisfying the Markoff equation m_1(n)^2 + m_2(n)^2 + m(n)^2 = 3*m_1(n)*m_2(n)*m(n). The famous Markoff uniqueness conjecture is that m(n) as largest member determines exactly one ordered triple MT(n). See, e.g., the Aigner reference, pp. 38-39, and Corollary 3.5, p. 48. [In numerating the sequence with n related to A002559(n) this conjecture is assumed to be true. - Wolfdieter Lang, Jul 29 2018]
The nonnegative integers k(n) are defined for the Markoff forms given by Cassels by k(n) = min{k1(n), k2(n)}, where m_1(n)*k1(n) - m_2(n) == 0 (mod m(n)), with 0 <= k1(n) < m(n), and m_2(n)*k2(n) - m_1(n) == 0 (mod m(n)), with 0 <= k2(n) < m(n). The k1 and k2 sequences are k1 = [0, 1, 2, 5, 17, 13, 34, 99, 119, 89, 179, 233, 577, 818, 610, 1777, 1597, 3363, 2673, 2923, 5609, 4181, 6089, 10946, 19601, 22095, 26536, 31881, 38447, 28657, 39916, 51709, 114243, 75025, 113922, 263522, 206855, 196418, 396263, 572063, ...], and k2 = [0, 1, 3, 8, 12, 21, 55, 70, 75, 144, 254, 377, 408, 507, 987, 1120, 2584, 2378, 3793, 4638, 3468, 6765, 8612, 17711, 13860, 15571, 16725, 19760, 23763, 46368, 56641, 83428, 80782, 121393, 180763, 162867, 292538, 317811, 249755, 353702, ...].
The discriminant of the form MF(n) = f_{m(n)}(x, y) is D(n) = 9*m(n)^2 - 4. D(n) = A305312(n), for n >= 1. Because D(n) > 0 (not a square) this is an indefinite binary quadratic form, for n >= 1. See Cassels Fig. 2 on p. 32 for the Markoff tree with these forms.
The quadratic irrational xi, determined by the solution with positive square root of f_{m(n)}(x, 1) = 0, is xi(n) = ((2*k - 3*m) + sqrt(D))/(2*m) (the argument n has been dropped). The regular continued fraction is eventually periodic, but not purely periodic. One can find equivalent Markoff forms determining purely periodic quadratic irrationals. The corresponding k sequence is given in A305311.
For the approximation of xi(n) with infinitely many rationals (in lowest terms) Perron's unimodular invariant M(xi) enters. For quadratic irrationals M(xi) < 3, and the values coincide with the discrete Lagrange spectrum < 3: M(xi(n)) = Lagrange(n) = sqrt{D(n)}/m(n), n >= 1. For n=1..4 see A002163, A010466, A200991 and A305308.
REFERENCES
Martin Aigner, Markov's Theorem and 100 Years of the Uniqueness Conjecture, Springer, 2013.
J. W. S. Cassels, An Introduction to Diophantine Approximation, Cambridge University Press, 1957, Chapter II, The Markoff Chain, pp. 18-44.
Julian Havil, The Irrationals, Princeton University Press, Princeton and Oxford, 2012, pp. 172-180 and 222-224.
Oskar Perron, Über die Approximation irrationaler Zahlen durch rationale, Sitzungsber. Heidelberger Akademie der Wiss., 1921, 4. Abhandlung, pp. 1-17 , and part II., 8. Abhandlung, pp.1-12, Carl Winters Universitätsbuchhandlung.
FORMULA
a(n) = k(n) has been defined in terms of the (conjectured unique) ordered Markoff triple MT(n) = (m_1(n), m_2(n), m(n)) with m(n) = A002559(n) in the comment above as k(n) = min{k1(n), k2(n)}, where m_1(n)*k1(n) - m_2(n) == 0 (mod m(n)), with 0 <= k1(n) < m(n), and m_2(n)*k2(n) - m_1(n) == 0 (mod m(n)), with 0 <= k2(n) < m(n).
EXAMPLE
n = 5: a(5) = k(5) = 12 because m(5) = A002559(5) = 29 with the triple MT(5) = (2, 5, 29). Whence 2*k1(5) - 5 == 0 (mod 29) for k1(5) = 17 < 29, and 5*k2(5) - 2 == 0 (mod 29) leads to k2(5) = 12. The smaller value is k2(5) = k(5) = 12. This leads to the form coefficients MF(5) = [29, 63, -31].
The forms MF(n) = [m(n), 3*m(n) - k(n), l(n) - 3*k(n)] with l(n) := (k(n)^2 + 1)/m(n) begin: [1, 3, 1], [2, 4, -2], [5, 11, -5], [13, 29, -13], [29, 63, -31], [34, 76, -34], [89, 199, -89], [169, 367, -181], [194, 432, -196], [233, 521, -233], [433, 941, -463], [610, 1364, -610], [985, 2139, -1055], [1325, 2961, -1327], [1597, 3571, -1597], [2897, 6451, -2927], [4181, 9349, -4181], [5741, 12467, -6149], [6466, 14052, -6914], [7561, 16837, -7639] ... .
The quadratic irrationals xi(n) = ((2*k(n) - 3*m(n)) + sqrt(D(n)))/(2*m(n)) begin: (-3 + sqrt(5))/2, -1 + sqrt(2), (-11 + sqrt(221))/10, (-29 + sqrt(1517))/26, (-63 + sqrt(7565))/58, (-19 + 5*sqrt(26))/17, (-199 + sqrt(71285))/178, (-367 + sqrt(257045))/338, (-108 + sqrt(21170))/97, (-521 + sqrt(488597))/466, (-941 + sqrt(1687397))/866, (-341 + sqrt(209306))/305, (-2139 + sqrt(8732021))/1970, (-2961 + sqrt(15800621))/2650, (-3571 + sqrt(22953677))/3194, (-6451 + sqrt(75533477))/5794, (-9349 + sqrt(157326845))/8362, (-12467 + 5*sqrt(11865269))/11482, (-3513 + 5*sqrt(940706))/3233, (-16837 + sqrt(514518485))/15122, ... .
The invariant M(xi(n)) = Lagrange(n) numbers begin with n >=1: sqrt(5), 2*sqrt(2), (1/5)*sqrt(221), (1/13)*sqrt(1517), (1/29)*sqrt(7565), (10/17)*sqrt(26), (1/89)*sqrt(71285), (1/169)*sqrt(257045), (2/97)*sqrt(21170), (1/233)*sqrt(488597), (1/433)*sqrt(1687397), (2/305)*sqrt(209306), (1/985)*sqrt(8732021), (1/1325)*sqrt(15800621), (1/1597)*sqrt(22953677), (1/2897)*sqrt(75533477), (1/4181)*sqrt(157326845), (5/5741)*sqrt(11865269), (10/3233)*sqrt(940706), (1/7561)*sqrt(514518485), ... .
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Jun 26 2018
STATUS
approved
Smallest member m_1(n) of the ordered Markoff triple MT(n) with largest member m(n) = A002559(n), n >= 1. These triples are conjectured to be unique.
+10
4
1, 1, 1, 1, 2, 1, 1, 2, 5, 1, 5, 1, 2, 13, 1, 5, 1, 2, 5, 13, 34, 1, 29, 1, 2, 29, 5, 13, 89, 1, 5, 34, 2, 1, 13, 233, 169, 1, 5, 34, 2, 29, 1, 5, 194, 13, 89, 610, 29, 1, 194, 2, 169, 433, 1, 5, 13, 34, 89, 985
OFFSET
1,5
COMMENTS
The second member m_2 of the Markoff (Markov) triple MT(n) = (m_1(n), m_2(n), m(n)) with m_1(n) <= m_2(n) <= m(n), for n >= 1, with m(n) = A002559(n) is given in A305314(n). For n>=3 the inequalities are strict. The existence of MT(n) with largest number m(n) is proved. The uniqueness is conjectured. The Markoff equation is (the argument n is dropped) m_1^2 + m_2^2 + m^2 = 3*m_1*m_2*m. See the references under A002559.
FORMULA
a(n) = m_1(n) is the fundamental proper solution x of the indefinite binary quadratic form x^2 - 3*m(n)*x*y + y^2, of discriminant D(n) = 9*m(n)^2 - 4 = A305312(n), representing -m(n)^2, for n >= 1, with x <= y. The uniqueness conjecture means that there are no other such fundamental solutions.
EXAMPLE
The Markoff triples begin: (1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), (2, 5, 29), (1, 13, 34), (1, 34, 89), (2, 29, 169), (5, 13, 194), (1, 89, 233), (5, 29, 433), (1, 233, 610), (2, 169, 985), (13, 34, 1325), (1, 610, 1597), (5,194,2897), (1, 1597, 4181), (2, 985, 5741), (5, 433, 6466), (13, 194, 7561), (34, 89, 9077), ...
CROSSREFS
KEYWORD
nonn
AUTHOR
Wolfdieter Lang, Jun 25 2018
STATUS
approved
Sequence a(n) = 3*A002559(n) - 2 determining the principal reduced indefinite binary quadratic form [1, a(n), -a(n)] for Markoff triples.
+10
3
1, 4, 13, 37, 85, 100, 265, 505, 580, 697, 1297, 1828, 2953, 3973, 4789, 8689, 12541, 17221, 19396, 22681, 27229, 32836, 44101, 85969, 100381, 112996, 129781, 154921, 186628, 225073, 289669, 405409, 585073, 589252, 884053, 1279165, 1498177, 1542685, 1938052, 2777293, 3410065, 3836452, 4038805
OFFSET
1,2
COMMENTS
The indefinite binary quadratic form F(n,x,y) = x^2 - 3*m(n)*x*y + y^2 = [1, -3*m(n), 1] representing -m(n)^2 with m(n) = A002559(n), determines Markoff triples MT(n) = (x(n) = A305313(n), y(n) = A305314(n), m(n)) with x(n) < y(n) < m(n), for n >= 3. For n = 1 and 2: x(n) = y(n) = 1. The Frobenius-Markoff conjecture is that this solution is unique. This form F(n,x,y) has discriminant D(n) = (3*m(n))^2 - 4 = a(n)*(a(n) + 4) = A305312(n) > 0.
Because -3*m(n) < 0 this form F(n,x,y) is not reduced (see e.g., the Buell reference, or the W. Lang link in A225953 for the definition).
The principal reduced form for F(n,x,y) is prF(n,X,Y) = X^2 + a(n)*X*Y - a(n)*Y^2 = [1, a(n), -a(n)]. (See, e.g., Lemma 2 of the W. Lang link in A225953 where b = a(n), f(D(n)) = ceiling(sqrt(D(n))) = 3*m(n), and D(n) and f(D(n)) have the same parity.) The relation between these forms is F(n,Y,Y-X) = prF(n,X,Y) with Y > 0, Y-X > 0, and X <= 0 (for n >= 3, X < 0).
REFERENCES
D. A. Buell, Binary quadratic forms, 1989, Springer, p. 21.
FORMULA
a(n) = 3*A002559(n) - 2, for n >= 1.
EXAMPLE
n = 3 with a(3) = 13: MT(3) = (1, 2, 5), F(3,x,y) = [1, -3*5, 1], prF(3,X,Y) = [1, 13, -13]. prF(3,X,Y) = -5^2 has two proper fundamental solutions with Y > 0, namely (-1, 1) and (1, 2). The unique solution with Y > 0, X < 0, and Y-X < 5 is (X, Y) = (-1, 1) corresponding to (x,y) = (1, 2) for MT(3).
The other fundamental solution (1, 2) corresponds to the unordered Markoff triple (2, 1, 5) (x > y, X > 0). The next solution in this class with X < 0 is (-12, 1) corresponding to the unordered triple (1, 13, 5) (Y-X = 13 > 5).
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 04 2019
STATUS
approved

Search completed in 0.010 seconds