[go: up one dir, main page]

login
Search: a292866 -id:a292866
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = B(n,n), where B(n,x) = Sum_{k=0..n} Stirling2(n,k)*x^k are the Bell polynomials (also known as exponential polynomials or Touchard polynomials).
+10
23
1, 1, 6, 57, 756, 12880, 268098, 6593839, 187104200, 6016681467, 216229931110, 8588688990640, 373625770888956, 17666550789597073, 902162954264563306, 49482106424507339565, 2901159958960121863952, 181069240855214001514460, 11985869691525854175222222
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
E.g.f.: x*f'(x)/f(x), where f(x) is the generating series for sequence A035051.
a(n) ~ (exp(1/LambertW(1)-2)/LambertW(1))^n * n^n / sqrt(1+LambertW(1)). - Vaclav Kotesovec, May 23 2014
Conjecture: It appears that the equation a(x)*e^x = Sum_{n=0..oo} ( (n^x*x^n)/n! ) is true for every positive integer x. - Nicolas Nagel, Apr 20 2016 [This is just the special case k=x of the formula B(k,x) = e^(-x) * Sum_{n=0..oo} n^k*x^n/n!; see for example the World of Mathematics link. - Pontus von Brömssen, Dec 05 2020]
a(n) = n! * [x^n] exp(n*(exp(x)-1)). - Alois P. Heinz, May 17 2016
a(n) = [x^n] Sum_{k=0..n} n^k*x^k/Product_{j=1..k} (1 - j*x). - Ilya Gutkovskiy, May 31 2018
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, (1+
add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
end:
a:= n-> A(n$2):
seq(a(n), n=0..20); # Alois P. Heinz, May 17 2016
MATHEMATICA
Table[BellB[n, n], {n, 0, 100}]
PROG
(Maxima) a(n):=stirling2(n, 0)+sum(stirling2(n, k)*n^k, k, 1, n);
makelist(a(n), n, 0, 30);
(PARI) a(n) = sum(k=0, n, stirling(n, k, 2)*n^k); \\ Michel Marcus, Apr 20 2016
CROSSREFS
Main diagonal of A189233 and of A292860.
KEYWORD
nonn
AUTHOR
Emanuele Munarini, May 23 2014
EXTENSIONS
Name corrected by Pontus von Brömssen, Dec 05 2020
STATUS
approved
Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. exp(k*(1 - exp(x))).
+10
9
1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 2, 1, 0, 1, -4, 6, 2, 1, 0, 1, -5, 12, -3, -6, -2, 0, 1, -6, 20, -20, -21, -14, -9, 0, 1, -7, 30, -55, -20, 24, 26, -9, 0, 1, -8, 42, -114, 45, 172, 195, 178, 50, 0, 1, -9, 56, -203, 246, 370, 108, -111, 90, 267, 0, 1, -10, 72, -328, 679, 318, -1105, -2388, -3072, -2382, 413, 0
OFFSET
0,8
LINKS
FORMULA
A(0,k) = 1 and A(n,k) = -k * Sum_{j=0..n-1} binomial(n-1,j) * A(j,k) for n > 0.
A(n,k) = Sum_{j=0..n} (-k)^j * Stirling2(n,j). - Seiichi Manyama, Jul 27 2019
A(n,k) = BellPolynomial(n, -k). - Peter Luschny, Dec 23 2021
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, -1, -2, -3, -4, -5, -6, ...
0, 0, 2, 6, 12, 20, 30, ...
0, 1, 2, -3, -20, -55, -114, ...
0, 1, -6, -21, -20, 45, 246, ...
0, -2, -14, 24, 172, 370, 318, ...
0, -9, 26, 195, 108, -1105, -4074, ...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1,
-(1+add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
end:
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Sep 25 2017
MATHEMATICA
A[n_, k_] := Sum[(-k)^j StirlingS2[n, j], {j, 0, n}];
Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 10 2021 *)
A292861[n_, k_] := BellB[k, k - n];
Table[A292861[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Peter Luschny, Dec 23 2021 *)
CROSSREFS
Columns k=0..4 give A000007, A000587, A213170, A309084, A309085.
Rows n=0..1 give A000012, (-1)*A001477.
Main diagonal gives A292866.
KEYWORD
sign,tabl,look
AUTHOR
Seiichi Manyama, Sep 25 2017
STATUS
approved
Triangle read by rows. T(n, k) = BellPolynomial(n, -k).
+10
9
1, 0, -1, 0, 0, 2, 0, 1, 2, -3, 0, 1, -6, -21, -20, 0, -2, -14, 24, 172, 370, 0, -9, 26, 195, 108, -1105, -4074, 0, -9, 178, -111, -2388, -4805, 2046, 34293, 0, 50, 90, -3072, -3220, 23670, 87510, 111860, -138312, 0, 267, -2382, -4053, 47532, 121995, -115458, -1193157, -2966088, -2932533
OFFSET
0,6
EXAMPLE
[0] 1
[1] 0, -1
[2] 0, 0, 2
[3] 0, 1, 2, -3
[4] 0, 1, -6, -21, -20
[5] 0, -2, -14, 24, 172, 370
[6] 0, -9, 26, 195, 108, -1105, - 4074
[7] 0, -9, 178, -111, -2388, -4805, 2046, 34293
[8] 0, 50, 90, -3072, -3220, 23670, 87510, 111860, -138312
[9] 0, 267, -2382, -4053, 47532, 121995, -115458, -1193157, -2966088, -2932533
MAPLE
A350263 := (n, k) -> ifelse(n = 0, 1, BellB(n, -k)):
seq(seq(A350263(n, k), k = 0..n), n = 0..9);
MATHEMATICA
T[n_, k_] := BellB[n, -k]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
CROSSREFS
Main diagonal: A292866, column 1: A000587, variant: A292861.
KEYWORD
sign,tabl
AUTHOR
Peter Luschny, Dec 23 2021
STATUS
approved
a(n) = [x^n] Sum_{k>=0} x^k/Product_{j=1..k} (1 + n*j*x).
+10
8
1, 1, -1, 1, 25, -674, 15211, -331827, 5987745, 15901597, -13125035449, 1292056076070, -103145930581319, 7462324963409941, -464957409070517453, 16313974895147212801, 2059903411953959582849, -708700955022151333496910, 143215213612865558214820303, -24681846509158429152517973103
OFFSET
0,5
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial
FORMULA
a(n) = n! * [x^n] exp((1 - exp(-n*x))/n), for n > 0.
a(n) = Sum_{k=0..n} (-n)^(n-k)*Stirling2(n,k).
a(n) = (-n)^n*BellPolynomial_n(-1/n) for n >= 1. - Peter Luschny, Aug 20 2018
MATHEMATICA
Table[SeriesCoefficient[Sum[x^k/Product[(1 + n j x), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 19}]
Join[{1}, Table[n! SeriesCoefficient[Exp[(1 - Exp[-n x])/n], {x, 0, n}], {n, 19}]]
Join[{1}, Table[Sum[(-n)^(n - k) StirlingS2[n, k], {k, n}], {n, 19}]]
Join[{1}, Table[(-n)^n BellB[n, -1/n], {n, 1, 21}]] (* Peter Luschny, Aug 20 2018 *)
PROG
(PARI) {a(n) = sum(k=0, n, (-n)^(n-k)*stirling(n, k, 2))} \\ Seiichi Manyama, Jul 27 2019
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Aug 20 2018
STATUS
approved
a(n) = exp(n) * Sum_{k>=0} (k + 1)^n * (-n)^k / k!.
+10
7
1, 0, -1, 7, -43, 221, -341, -15980, 370761, -5688125, 62689871, -197586839, -14973562979, 585250669316, -14306382821485, 240985102271971, -1121421968408303, -122020498882279931, 6674724196051810807, -223424819176020519168, 5051515662105879438501
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial
FORMULA
a(n) = [x^n] (1/(1 - x)) * Sum_{k>=0} (-n*x/(1 - x))^k / Product_{j=1..k} (1 - j*x/(1 - x)).
a(n) = n! * [x^n] exp(x + n*(1 - exp(x))).
a(n) = Sum_{k=0..n} binomial(n,k) * BellPolynomial_k(-n).
MATHEMATICA
Table[n! SeriesCoefficient[Exp[x + n (1 - Exp[x])], {x, 0, n}], {n, 0, 20}]
Table[Sum[Binomial[n, k] BellB[k, -n], {k, 0, n}], {n, 0, 20}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Apr 19 2020
STATUS
approved
a(n) = exp(n) * Sum_{k>=0} (-n)^k * (k - 1)^n / k!.
+10
5
1, -2, 7, -31, 149, -631, 475, 43210, -844727, 10960505, -86569889, -584746911, 46302579229, -1304510879686, 25366896568707, -277053418780891, -4271166460501743, 384590020131637825, -14617527176248527545, 380117694164438489422, -5265650620303861935579
OFFSET
0,2
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial
FORMULA
a(n) = n! * [x^n] exp(n*(1 - exp(x)) - x).
a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(n,k) * BellPolynomial_k(-n).
MATHEMATICA
Table[n! SeriesCoefficient[Exp[n (1 - Exp[x]) - x], {x, 0, n}], {n, 0, 20}]
Table[Sum[(-1)^(n - k) Binomial[n, k] BellB[k, -n], {k, 0, n}], {n, 0, 20}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Jun 27 2020
STATUS
approved
a(n) = exp(n) * Sum_{k>=0} (k + n)^n * (-n)^k / k!.
+10
4
1, 0, -2, -3, 44, 245, -2346, -33278, 186808, 6888555, -6774910, -1986368439, -10227075420, 738830661296, 10363304656782, -327255834908715, -9380517430358288, 152180429032236325, 9132761207739810618, -46897839494116200918, -9833058047657527541220
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial
FORMULA
a(n) = n! * [x^n] exp(n*(1 + x - exp(x))).
a(n) = Sum_{k=0..n} binomial(n,k) * BellPolynomial_k(-n) * n^(n-k).
MATHEMATICA
Table[n! SeriesCoefficient[Exp[n (1 + x - Exp[x])], {x, 0, n}], {n, 0, 20}]
Join[{1}, Table[Sum[Binomial[n, k] BellB[k, -n] n^(n - k), {k, 0, n}], {n, 1, 20}]]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Apr 19 2020
STATUS
approved
a(n) = exp(n) * Sum_{k>=0} (-1)^k * n^(k-1) * k^(n-1) / k!.
+10
2
1, -1, 2, -5, 9, 53, -1107, 12983, -116470, 560049, 8370713, -346902877, 7551856337, -117404648467, 913399734614, 22560135521007, -1393700803877939, 44331044030953865, -979905458659247779, 10462396536804802459, 367799071887303276422, -30046998012662824941947
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial
FORMULA
a(n) = Sum_{k=0..n-1} (-1)^k * Stirling2(n-1,k) * n^(k-1).
a(n) = BellPolynomial_(n-1)(-n) / n.
MATHEMATICA
Table[Sum[(-1)^k StirlingS2[n - 1, k] n^(k - 1), {k, 0, n - 1}], {n, 1, 22}]
Table[BellB[n - 1, -n]/n, {n, 1, 22}]
PROG
(PARI) a(n)={sum(k=0, n-1, (-1)^k * stirling(n-1, k, 2) * n^(k-1))} \\ Andrew Howroyd, May 18 2020
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, May 18 2020
STATUS
approved
a(n) = (-1)^n * exp(n) * Sum_{k>=1} (-1)^k * n^(k-1) * k^n / k!.
+10
0
1, 1, 1, -5, -74, -679, -4899, -17289, 325837, 10627109, 199348590, 2684041427, 15872610469, -546948563407, -27499774835519, -778467357484561, -15311413773551790, -125363405319188419, 6452292137017871097, 436442148982835915339, 16494863323310244977581
OFFSET
1,4
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial
FORMULA
E.g.f.: series reversion of -log(1 - x) * exp(-x).
a(n) = (n - 1)! * [x^n] exp(n*(1 - exp(-x))).
a(n) = Sum_{k=1..n} (-1)^(n-k) * Stirling2(n,k) * n^(k-1).
a(n) = (-1)^n * BellPolynomial_n(-n) / n.
MATHEMATICA
nmax = 21; CoefficientList[InverseSeries[Series[-Log[1 - x] Exp[-x], {x, 0, nmax}], x], x] Range[0, nmax]! // Rest
Table[Sum[(-1)^(n - k) StirlingS2[n, k] n^(k - 1), {k, 1, n}], {n, 1, 21}]
Table[(-1)^n BellB[n, -n]/n, {n, 1, 21}]
PROG
(PARI) a(n) = sum(k=1, n, (-1)^(n-k) * stirling(n, k, 2) * n^(k-1)); \\ Michel Marcus, Apr 20 2020
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Apr 20 2020
STATUS
approved

Search completed in 0.011 seconds