[go: up one dir, main page]

login
A242817
a(n) = B(n,n), where B(n,x) = Sum_{k=0..n} Stirling2(n,k)*x^k are the Bell polynomials (also known as exponential polynomials or Touchard polynomials).
23
1, 1, 6, 57, 756, 12880, 268098, 6593839, 187104200, 6016681467, 216229931110, 8588688990640, 373625770888956, 17666550789597073, 902162954264563306, 49482106424507339565, 2901159958960121863952, 181069240855214001514460, 11985869691525854175222222
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Bell Polynomial.
FORMULA
E.g.f.: x*f'(x)/f(x), where f(x) is the generating series for sequence A035051.
a(n) ~ (exp(1/LambertW(1)-2)/LambertW(1))^n * n^n / sqrt(1+LambertW(1)). - Vaclav Kotesovec, May 23 2014
Conjecture: It appears that the equation a(x)*e^x = Sum_{n=0..oo} ( (n^x*x^n)/n! ) is true for every positive integer x. - Nicolas Nagel, Apr 20 2016 [This is just the special case k=x of the formula B(k,x) = e^(-x) * Sum_{n=0..oo} n^k*x^n/n!; see for example the World of Mathematics link. - Pontus von Brömssen, Dec 05 2020]
a(n) = n! * [x^n] exp(n*(exp(x)-1)). - Alois P. Heinz, May 17 2016
a(n) = [x^n] Sum_{k=0..n} n^k*x^k/Product_{j=1..k} (1 - j*x). - Ilya Gutkovskiy, May 31 2018
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, (1+
add(binomial(n-1, j-1)*A(n-j, k), j=1..n-1))*k)
end:
a:= n-> A(n$2):
seq(a(n), n=0..20); # Alois P. Heinz, May 17 2016
MATHEMATICA
Table[BellB[n, n], {n, 0, 100}]
PROG
(Maxima) a(n):=stirling2(n, 0)+sum(stirling2(n, k)*n^k, k, 1, n);
makelist(a(n), n, 0, 30);
(PARI) a(n) = sum(k=0, n, stirling(n, k, 2)*n^k); \\ Michel Marcus, Apr 20 2016
CROSSREFS
Main diagonal of A189233 and of A292860.
Sequence in context: A305276 A032119 A294511 * A376100 A295238 A256016
KEYWORD
nonn
AUTHOR
Emanuele Munarini, May 23 2014
EXTENSIONS
Name corrected by Pontus von Brömssen, Dec 05 2020
STATUS
approved