[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a286944 -id:a286944
Displaying 1-6 of 6 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A287616 Number of ways to write n as x(x+1)/2 + y(3y+1)/2 + z(5z+1)/2 with x,y,z nonnegative integers. +10
7
1, 1, 1, 3, 1, 2, 3, 1, 3, 1, 3, 3, 2, 4, 2, 3, 3, 3, 4, 3, 2, 5, 1, 2, 4, 3, 5, 4, 5, 4, 4, 3, 6, 3, 3, 2, 5, 2, 3, 7, 3, 7, 2, 6, 3, 5, 6, 7, 2, 4, 6, 3, 7, 2, 8, 4, 2, 6, 6, 3, 8, 3, 4, 6, 3, 7, 5, 6, 7, 4, 6, 9, 5, 6, 4, 4, 3, 4, 9, 5, 6 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 1, 2, 4, 7, 9, 22.
It was proved in arXiv:1502.03056 that each n = 0,1,2,... can be written as x(x+1)/2 + y(3y+1)/2 + z(5z+1)/2 with x,y,z integers. The author would like to offer 135 US dollars as the prize for the first proof of the conjecture that a(n) is always positive.
See over 400 similar conjectures in the linked a-file.
LINKS
Zhi-Wei Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127 (2007), 103-113.
Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58 (2015), No. 7, 1367-1396.
Zhi-Wei Sun, On universal sums x(ax+b)/2+y(cy+d)/2+z(ez+f)/2, arXiv:1502.03056 [math.NT], 2015-2017.
EXAMPLE
a(4) = 1 since 4 = 1*(1+1)/2 + 0*(3*0+1)/2 + 1*(5*1+1)/2.
a(7) = 1 since 7 = 0*(0+1)/2 + 2*(3*2+1)/2 + 0*(5*0+1)/2.
a(9) = 1 since 9 = 3*(3+1)/2 + 0*(3*0+1)/2 + 1*(5*1+1)/2.
a(22) = 1 since 22 = 5*(5+1)/2 + 2*(3*2+1)/2 + 0*(5*0+1)/2.
MATHEMATICA
TQ[n_]:=TQ[n]=IntegerQ[Sqrt[8n+1]];
Do[r=0; Do[If[TQ[n-x(3x+1)/2-y(5y+1)/2], r=r+1], {x, 0, (Sqrt[24n+1]-1)/6}, {y, 0, (Sqrt[40(n-x(3x+1)/2)+1]-1)/10}]; Print[n, " ", r], {n, 0, 80}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, May 27 2017
STATUS
approved
A290342 Number of ways to write n as x^2 + 2*y^2 + z*(z+1)/2, where x is a nonnegative integer, and y and z are positive integers. +10
5
0, 0, 0, 1, 1, 1, 1, 1, 1, 3, 1, 1, 4, 2, 2, 2, 1, 2, 4, 3, 2, 4, 2, 4, 4, 3, 1, 4, 5, 2, 5, 1, 3, 6, 5, 2, 3, 6, 3, 9, 3, 1, 6, 3, 5, 4, 4, 6, 7, 3, 2, 5, 3, 6, 9, 6, 3, 7, 6, 2, 8, 5, 4, 8, 6, 3, 4, 6, 3, 12, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,10
COMMENTS
Conjecture: a(n) > 0 for all n > 2. In other words, each n = 0,1,2,... can be written as x^2 + 2y*(y+2) + z*(z+3)/2 with x,y,z nonnegative integers.
As pointed out by Sun in his 2007 paper in Acta Arith., a result of Jones and Pall implies that every n = 0,1,2,... can be written as x^2 + 2*(2y)^2 + z*(z+1)/2 with x,y,z nonnegative integers.
Let a,c,e be positive integers, and let b,d,f be nonnegative integers with a-b, c-d, e-f all even. Suppose that a|b, c|d and e|f. The author studied in arXiv:1502.03056 when each nonnegative integer can be written as x*(a*x+b)/2 + y*(c*y+d)/2 + z*(e*z+f)/2 with x,y,z nonnegative integers, and conjectured that the answer is positive if (a,b,c,d,e,f) is among the following ten tuples (4,0,2,0,1,3), (4,0,2,0,1,5), (4,0,2,6,1,1), (4,0,2,6,2,0), (4,4,2,0,1,3), (4,8,2,0,1,1), (4,8,2,0,1,3), (4,12,2,0,1,1), (6,0,2,0,1,3), (6,6,2,0,1,3).
See also A287616 and A286944 for related comments.
LINKS
B. W. Jones and G. Pall, Regular and semi-regular positive ternary quadratic forms, Acta Math. 70 (1939), 165-191.
Zhi-Wei Sun, Mixed sums of squares and triangular numbers, Acta Arith. 127(2007), 103-113.
Zhi-Wei Sun, On universal sums x(ax+b)/2+y(cy+d)/2+z(ez+f)/2, arXiv:1502.03056 [math.NT], 2015-2017.
EXAMPLE
a(10) = 1 since 10 = 1^2 + 2*2^2 + 1*2/2.
a(11) = 1 since 11 = 0^2 + 2*2^2 + 2*3/2.
a(16) = 1 since 16 = 2^2 + 2*1^2 + 4*5/2.
a(26) = 1 since 26 = 3^2 + 2*1^2 + 5*6/2.
a(31) = 1 since 31 = 1^2 + 2*1^2 + 7*8/2.
a(41) = 1 since 41 = 6^2 + 2*1^2 + 2*3/2.
MATHEMATICA
TQ[n_]:=TQ[n]=n>0&&IntegerQ[Sqrt[8n+1]]
Do[r=0; Do[If[TQ[n-x^2-2y^2], r=r+1], {x, 0, Sqrt[n]}, {y, 1, Sqrt[(n-x^2)/2]}]; Print[n, " ", r], {n, 0, 70}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jul 27 2017
STATUS
approved
A286885 Number of ways to write 6*n+1 as x^2 + 3*y^2 + 54*z^2 with x,y,z nonnegative integers. +10
4
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 1, 3, 2, 3, 1, 1, 2, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 4, 4, 3, 2, 2, 4, 2, 3, 3, 3, 3, 3, 2, 2, 4, 3, 4, 1, 3, 2, 3, 4, 3, 3, 3, 3, 2, 3, 3, 2, 4, 3, 2, 3, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
Conjecture: a(n) > 0 for all n = 0,1,2,....
In the a-file, we list the tuples (m,r,a,b,c) with 30 >= m > max{2,r} >= 0, 100 >= a >= b >= c > 0, gcd(a,b,c) = 1, and the form a*x^2+b*y^2+c*z^2 irregular, such that all the numbers m*n+r (n = 0,1,2,...) should be representable by a*x^2+b*y^2+c*z^2 with x,y,z integers.
LINKS
Tomáš Hejda and Vítezslav Kala, Ternary quadratic forms representing arithmetic progressions, arXiv:1906.02538 [math.NT], 2019.
Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58 (2015), 1367-1396.
Zhi-Wei Sun, On universal sums x(ax+b)/2+y(cy+d)/2+z(ez+f)/2, arXiv:1502.03056 [math.NT], 2015-2017.
Hai-Liang Wu and Zhi-Wei Sun, Some universal quadratic sums over the integers, arXiv:1707.06223 [math.NT], 2017.
Hai-Liang Wu and Zhi-Wei Sun, Arithmetic progressions represented by diagonal ternary quadratic forms, arXiv:1811.05855 [math.NT], 2018.
EXAMPLE
a(9) = 1 since 6*9 + 1 = 1^2 + 3*0^2 + 54*1^2.
a(34) = 1 since 6*34 + 1 = 2^2 + 3*7^2 + 54*1^2.
a(125) = 1 since 6*125 + 1 = 26^2 + 3*5^2 + 54*0^2.
a(130) = 1 since 6*130 + 1 = 22^2 + 3*9^2 + 54*1^2.
a(133) = 1 since 6*133 + 1 = 11^2 + 3*8^2 + 54*3^2.
a(203) = 1 since 6*203 + 1 = 25^2 + 3*6^2 + 54*3^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
table={}; Do[r=0; Do[If[SQ[6n+1-3y^2-54z^2], r=r+1], {y, 0, Sqrt[(6n+1)/3]}, {z, 0, Sqrt[(6n+1-3y^2)/54]}]; table=Append[table, r], {n, 0, 70}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 02 2017
STATUS
approved
A290472 Number of ways to write 6*n+1 as x^2 + 3*y^2 + 7*z^2, where x is a positive integer, and y and z are nonnegative integers. +10
4
1, 1, 1, 2, 1, 1, 2, 3, 3, 1, 1, 4, 1, 3, 1, 9, 1, 1, 2, 4, 3, 3, 3, 5, 1, 4, 2, 6, 3, 6, 1, 4, 2, 3, 1, 7, 3, 3, 3, 6, 2, 3, 2, 15, 2, 5, 2, 4, 2, 2, 7, 6, 3, 6, 2, 11, 3, 7, 3, 6, 4, 5, 2, 11, 4, 3, 1, 7, 3, 2, 4, 17, 2, 3, 3, 8, 2, 5, 7, 9, 4, 4, 2, 13, 1, 13, 1, 5, 4, 3, 4, 6, 7, 7, 3, 10, 4, 6, 3, 20, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Conjecture: a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 1, 2, 4, 5, 9, 10, 12, 14, 16, 17, 24, 30, 34, 66, 84, 86, 116, 124, 152, 286.
We also conjecture that {6n+5: n = 0,1,2,...} is a subset of {2x^2+3y^2+5z^2: x,y,z are nonnegative integers with y > 0}.
See A286885 for more similar conjectures.
In support of the first conjecture, a(n) > 1 for 286 < n <= 10^7. - Charles R Greathouse IV, Aug 04 2017
LINKS
Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58 (2015), 1367-1396.
Zhi-Wei Sun, On universal sums x(ax+b)/2+y(cy+d)/2+z(ez+f)/2, arXiv:1502.03056 [math.NT], 2015-2017.
Hai-Liang Wu and Zhi-Wei Sun, Some universal quadratic sums over the integers, arXiv:1707.06223 [math.NT], 2017.
EXAMPLE
a(4) = 1 since 6*4+1 = 5^2 + 3*0^2 + 7*0^2.
a(5) = 1 since 6*5+1 = 2^2 + 3*3^2 + 7*0^2.
a(9) = 1 since 6*9+1 = 6^2 + 3*2^2 + 7*1^2.
a(116) = 1 since 6*116+1 = 9^2 + 3*14^2 + 7*2^2.
a(124) = 1 since 6*124+1 = 21^2 + 3*8^2 + 7*4^2.
a(152) = 1 since 6*152+1 = 19^2 + 3*10^2 + 7*6^2.
a(286) = 1 since 6*286+1 = 11^2 + 3*14^2 + 7*12^2.
MATHEMATICA
SQ[n_]:=SQ[n]=n>0&&IntegerQ[Sqrt[n]];
Do[r=0; Do[If[SQ[6n+1-3y^2-7z^2], r=r+1], {y, 0, Sqrt[(6n+1)/3]}, {z, 0, Sqrt[(6n+1-3y^2)/7]}]; Print[n, " ", r], {n, 0, 100}]
PROG
(PARI) a(n)=my(s=6*n+1, t); sum(z=0, sqrtint((s-1)\7), t=s-7*z^2; sum(y=0, sqrtint((t-1)\3), issquare(t-3*y^2))) \\ Charles R Greathouse IV, Aug 03 2017
(PARI) first(n)=my(v=vector(n+1), mx=6*n+1, s, t, u); for(x=1, sqrtint(mx), s=x^2; for(y=0, sqrtint((mx-s)\3), t=s+3*y^2; for(z=0, sqrtint((mx-t)\7), u=t+7*z^2; if(u%6==1, v[u\6+1]++)))); v \\ Charles R Greathouse IV, Aug 03 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 03 2017
STATUS
approved
A290491 Number of ways to write 12*n+1 as x^2 + 4*y^2 + 8*z^4, where x and y are positive integers and z is a nonnegative integer. +10
4
2, 2, 2, 1, 2, 3, 2, 2, 2, 1, 3, 4, 3, 2, 3, 5, 3, 1, 4, 3, 3, 4, 3, 2, 2, 5, 5, 1, 3, 2, 4, 3, 3, 3, 2, 6, 3, 2, 1, 3, 6, 4, 2, 2, 3, 5, 3, 3, 1, 2, 4, 3, 4, 2, 5, 4, 5, 5, 3, 2, 7, 4, 4, 3, 2, 6, 3, 4, 4, 3, 9, 3, 2, 3, 3, 6, 5, 4, 4, 3, 8, 5, 2, 2, 3, 6, 3, 3, 4, 4, 5, 7, 2, 3, 3, 8, 6, 1, 5, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 4, 10, 18, 28, 39, 49, 98, 142, 163, 184, 208, 320, 382, 408, 814, 910, 1414, 2139, 2674, 3188, 3213, 4230, 6279, 25482.
(ii) All the numbers 16*n+5 (n = 0,1,2,...) can be written as x^4 + 4*y^2 + z^2, where x,y,z are integers with y > 0 and z > 0.
(iii) All the numbers 24*n+1 (n = 0,1,2,...) can be written as 12*x^4 + 4*y^2 + z^2 with x,y,z integers. Also, all the numbers 24*n+9 (n = 0,1,2,...) can be written as 2*x^4 + 6*y^2 + z^2 with x,y,z positive integers.
(iv) All the numbers 24*n+2 (n = 0,1,2,...) can be written as x^4 + 9*y^2 + z^2, where x,y,z are integers with z > 0. Also, all the numbers 24*n+17 (n = 0,1,2,...) can be written as x^4 + 16*y^2 + z^2, where x,y,z are integers with y > 0 and z > 0.
(v) All the numbers 30*n+3 (n = 1,2,3,...) can be written as 2*x^4 + 3*y^2 + z^2 with x,y,z positive integers. Also, all the numbers 30*n+21 (n = 0,1,2,...) can be written as 2*x^4 + 3*y^2 + z^2, where x,y,z are integers with z > 0.
LINKS
Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58 (2015), 1367-1396.
Zhi-Wei Sun, On universal sums x(ax+b)/2+y(cy+d)/2+z(ez+f)/2, arXiv:1502.03056 [math.NT], 2015-2017.
Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34 (2017), No. 2, 97-120.
EXAMPLE
a(10) = 1 since 12*10+1 = 7^2 + 4*4^2 + 8*1^4.
a(28) = 1 since 12*28+1 = 9^2 + 4*8^2 + 8*0^4.
a(49) = 1 since 12*49+1 = 19^2 + 4*5^2 + 8*2^4.
a(3188) = 1 since 12*3188+1 = 103^2 + 4*80^2 + 8*4^4.
a(3213) = 1 since 12*3213+1 = 91^2 + 4*87^2 + 8*0^4.
a(4230) = 1 since 12*4230+1 = 223^2 + 4*16^2 + 8*1^4.
a(6279) = 1 since 12*6279+1 = 19^2 + 4*75^2 + 8*9^4.
a(25482) = 1 since 12*25482+1 = 531^2 + 4*58^2 + 8*6^4.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
Do[r=0; Do[If[SQ[12n+1-8x^4-4y^2], r=r+1], {x, 0, ((12n+1)/8)^(1/4)}, {y, 1, Sqrt[(12n+1-8x^4)/4]}]; Print[n, " ", r], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 03 2017
STATUS
approved
A260418 Number of ways to write 12*n+5 as 4*x^4 + 4*y^2 + z^2, where x is a nonnegative integer, and y and z are positive integers. +10
2
1, 2, 2, 2, 1, 3, 2, 4, 3, 2, 3, 2, 5, 2, 3, 3, 2, 4, 3, 3, 3, 2, 5, 2, 3, 3, 2, 6, 3, 4, 3, 5, 6, 3, 3, 5, 3, 5, 4, 2, 5, 4, 7, 3, 2, 7, 4, 6, 2, 2, 4, 3, 8, 4, 1, 2, 4, 8, 6, 2, 5, 2, 7, 4, 4, 3, 4, 5, 2, 4, 5, 6, 4, 3, 2, 5, 2, 7, 4, 5, 5, 2, 5, 3, 6, 5, 4, 7, 3, 4, 3, 5, 9, 3, 4, 3, 5, 11, 4, 5, 5 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Conjecture: (i) a(n) > 0 for all n = 0,1,2,..., and a(n) = 1 only for n = 0, 4, 54, 159, 289, 999, 1175, 1404, 16391, 39688.
(ii) All the numbers 24*n+4 (n = 0,1,2,...) can be written as 3*x^4+24*y^2+z^2, where x,y,z are integers with x > 0 and z > 0.
(iii) All the numbers 24*n+13 (n = 0,1,2,...) can be written as 3*x^4+9*y^2+z^2 with x,y,z positive integers.
(iv) All the numbers 24*n+r (n = 0,1,2,...) can be written as a*x^4+b*y^2+c*z^2 with x an integer and y and z positive integers, provided that (r,a,b,c) is among the following quadruples: (5,3,1,1), (5,12,4,1), (7,3,6,1), (10,5,1,1), (11,3,8,3), (11,6,3,2), (17,9,4,1).
See A290491 for a similar conjecture.
LINKS
Zhi-Wei Sun, On universal sums of polygonal numbers, Sci. China Math. 58(2015), 1367-1396.
Zhi-Wei Sun, On universal sums x(ax+b)/2+y(cy+d)/2+z(ez+f)/2, arXiv:1502.03056 [math.NT], 2015-2017.
Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120.
EXAMPLE
a(4) = 1 since 12*4+5 = 4*0^4 + 4*1^2 + 7^2.
a(54) = 1 since 12*54+5 = 4*0^4 + 4*11^2 + 13^2.
a(159) = 1 since 12*159+5 = 4*0^4 + 4*4^2 + 43^2.
a(289) = 1 since 12*289+5 = 4*1^4 + 4*19^2 + 45^2.
a(999) = 1 since 12*999+5 = 4*7^4 + 4*21^2 + 25^2.
a(1175) = 1 since 12*1175+5 = 4*3^4 + 4*55^2 + 41^2.
a(1404) = 1 since 12*1404+5 = 4*3^4 + 4*10^2 + 127^2.
a(16391) = 1 since 12*16391+5 = 4*5^4 + 4*207^2 + 151^2.
a(39688) = 1 since 12*39688+5 = 4*5^4 + 4*50^2 + 681^2.
MATHEMATICA
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]];
Do[r=0; Do[If[SQ[12n+5-4x^4-4y^2], r=r+1], {x, 0, ((12n+5)/4)^(1/4)}, {y, 1, Sqrt[(12n+5-4x^4)/4]}]; Print[n, " ", r], {n, 0, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Aug 04 2017
STATUS
approved
page 1

Search completed in 0.006 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 1 15:18 EDT 2024. Contains 375591 sequences. (Running on oeis4.)