[go: up one dir, main page]

login
Search: a279944 -id:a279944
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle whose n-th row lists in order all e-numbers of free pure symmetric multifunctions (with empty expressions allowed) with one atom and n positions.
+10
3
1, 2, 3, 4, 5, 6, 8, 9, 16, 7, 10, 12, 13, 21, 25, 27, 32, 36, 64, 81, 128, 256, 11, 14, 17, 18, 28, 33, 35, 41, 45, 49, 75, 93, 100, 125, 144, 145, 169, 216, 243, 279, 441, 512, 625, 729, 1024, 1296, 2048, 2187, 4096, 6561, 8192, 16384, 65536, 524288, 8388608, 9007199254740992
OFFSET
1,2
COMMENTS
Given a positive integer n we construct a unique free pure symmetric multifunction e(n) by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)].
Every free pure symmetric multifunction (with empty expressions allowed) f with one atom and n positions has a unique e-number n such that e(n) = f, and vice versa, so this sequence is a permutation of the positive integers.
LINKS
Mathematica Reference, Orderless
EXAMPLE
Triangle begins:
1
2
3 4
5 6 8 9 16
7 10 12 13 21 25 27 32 36 64 81 128 256
Corresponding triangle of free pure symmetric multifunctions (with empty expressions allowed) begins:
o,
o[],
o[][], o[o],
o[][][], o[o][], o[o[]], o[][o], o[o,o].
MATHEMATICA
maxUsing[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-1}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{maxUsing[h], Union[Sort/@Tuples[maxUsing/@p]]}], {p, IntegerPartitions[g]}]]];
radQ[n_]:=And[n>1, GCD@@FactorInteger[n][[All, 2]]==1];
Clear[rad]; rad[n_]:=rad[n]=If[n==0, 1, NestWhile[#+1&, rad[n-1]+1, Not[radQ[#]]&]];
ungo[x_?AtomQ]:=1; ungo[h_[g___]]:=rad[ungo[h]]^(Times@@Prime/@ungo/@{g});
Table[Sort[ungo/@maxUsing[n]], {n, 5}]
KEYWORD
nonn,tabf
AUTHOR
Gus Wiseman, Aug 03 2018
STATUS
approved
Positions of the prime numbers in the sequence of numbers that are not perfect powers (A007916).
+10
2
1, 2, 3, 5, 7, 9, 12, 14, 18, 22, 24, 28, 32, 34, 38, 43, 49, 51, 56, 60, 62, 68, 71, 77, 85, 88, 90, 94, 96, 100, 112, 115, 121, 123, 132, 134, 140, 146, 150, 155, 161, 163, 173, 175, 178, 180, 192, 203, 206, 208, 212, 218, 220, 229, 234, 240, 246, 248, 254
OFFSET
1,2
LINKS
FORMULA
A007916(a(n)) = A000040(n).
MATHEMATICA
nn=100; rads=Select[Range[2, nn], GCD@@FactorInteger[#][[All, 2]]===1&];
Table[Position[rads, Prime[n]][[1, 1]], {n, PrimePi[nn]}]
PROG
(PARI) lista(nn) = Vec(select(x->isprime(x), Vec(select(x->(!ispower(x)&&x>1), [1..nn])), 1)); \\ Michel Marcus, May 04 2018
(Python)
from sympy import prime, mobius, integer_nthroot
def A279984(n): return int((p:=prime(n))-1+sum(mobius(k)*(integer_nthroot(p, k)[0]-1) for k in range(2, p.bit_length()))) # Chai Wah Wu, Oct 12 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 24 2016
STATUS
approved
a(1)=1, a(n+1)=2^(prime(a(n))-1).
+10
1
1, 2, 4, 64, 2085924839766513752338888384931203236916703635113918720651407820138886450957656787131798913024
OFFSET
1,2
MATHEMATICA
NestList[Power[2, Prime[#]-1]&, 1, 4]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 24 2016
STATUS
approved
Regular triangle where T(n,k) is the number of distinct free pure symmetric multifunctions (with empty expressions allowed) with one atom, n positions, and k leaves.
+10
1
1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 17, 7, 1, 0, 1, 15, 43, 33, 9, 1, 0, 1, 21, 92, 118, 55, 11, 1, 0, 1, 28, 174, 341, 252, 82, 13, 1, 0, 1, 36, 302, 845, 935, 463, 115, 15, 1, 0, 1, 45, 490, 1864, 2921, 2103, 769, 153, 17, 1, 0, 1, 55, 755
OFFSET
1,8
LINKS
Mathematica Reference, Orderless
EXAMPLE
The T(5,3) = 5 expressions are o[o[o]], o[o,o[]], o[][o,o], o[o][o], o[o,o][].
Triangle begins:
1
1 0
1 1 0
1 3 1 0
1 6 5 1 0
1 10 17 7 1 0
1 15 43 33 9 1 0
1 21 92 118 55 11 1 0
1 28 174 341 252 82 13 1 0
1 36 302 845 935 463 115 15 1 0
1 45 490 1864 2921 2103 769 153 17 1 0
1 55 755 3755 7981 8012 4145 1187 197 19 1 0
MATHEMATICA
maxUsing[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-1}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{maxUsing[h], Union[Sort/@Tuples[maxUsing/@p]]}], {p, IntegerPartitions[g]}]]];
Table[Length[Select[maxUsing[n], Length[Position[#, "o"]]==k&]], {n, 12}, {k, n}]
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Aug 03 2018
STATUS
approved
a(1) = 1, a(r(n)^k) = 1 + k * a(n) where r(n) is the n-th number that is not a perfect power A007916(n).
+10
0
1, 2, 3, 3, 4, 4, 5, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 7, 7, 8, 6, 7, 8, 8, 7, 9, 7, 7, 8, 9, 9, 6, 8, 10, 8, 7, 8, 9, 10, 10, 7, 9, 11, 9, 8, 9, 10, 11, 9, 11, 8, 10, 12, 10, 9, 10, 11, 12, 10, 12, 9, 11, 13, 7, 11, 10, 11, 12, 13, 11, 13, 10, 12, 14, 8, 12, 11
OFFSET
1,2
COMMENTS
Any positive integer greater than 1 can be written uniquely as a perfect power r(n)^k. We define a planted achiral (or generalized Bethe) tree b(n) for any positive integer greater than 1 by writing n as a perfect power r(d)^k and forming a tree with k branches all equal to b(d). Then a(n) is the number of nodes in b(n).
EXAMPLE
The first nineteen planted achiral trees are:
o,
(o),
((o)), (oo),
(((o))), ((oo)),
((((o)))), (ooo), ((o)(o)), (((oo))),
(((((o))))), ((ooo)), (((o)(o))), ((((oo)))),
((((((o)))))), (oooo), (((ooo))), ((((o)(o)))), (((((oo))))).
MATHEMATICA
nn=100;
rads=Select[Range[2, nn], GCD@@FactorInteger[#][[All, 2]]===1&];
a[1]:=1; a[n_]:=With[{k=GCD@@FactorInteger[n][[All, 2]]}, 1+k*a[Position[rads, n^(1/k)][[1, 1]]]];
Array[a, nn]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 09 2017
STATUS
approved

Search completed in 0.013 seconds