[go: up one dir, main page]

login
A317659
Regular triangle where T(n,k) is the number of distinct free pure symmetric multifunctions (with empty expressions allowed) with one atom, n positions, and k leaves.
1
1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 10, 17, 7, 1, 0, 1, 15, 43, 33, 9, 1, 0, 1, 21, 92, 118, 55, 11, 1, 0, 1, 28, 174, 341, 252, 82, 13, 1, 0, 1, 36, 302, 845, 935, 463, 115, 15, 1, 0, 1, 45, 490, 1864, 2921, 2103, 769, 153, 17, 1, 0, 1, 55, 755
OFFSET
1,8
LINKS
Mathematica Reference, Orderless
EXAMPLE
The T(5,3) = 5 expressions are o[o[o]], o[o,o[]], o[][o,o], o[o][o], o[o,o][].
Triangle begins:
1
1 0
1 1 0
1 3 1 0
1 6 5 1 0
1 10 17 7 1 0
1 15 43 33 9 1 0
1 21 92 118 55 11 1 0
1 28 174 341 252 82 13 1 0
1 36 302 845 935 463 115 15 1 0
1 45 490 1864 2921 2103 769 153 17 1 0
1 55 755 3755 7981 8012 4145 1187 197 19 1 0
MATHEMATICA
maxUsing[n_]:=If[n==1, {"o"}, Join@@Cases[Table[PR[k, n-k-1], {k, n-1}], PR[h_, g_]:>Join@@Table[Apply@@@Tuples[{maxUsing[h], Union[Sort/@Tuples[maxUsing/@p]]}], {p, IntegerPartitions[g]}]]];
Table[Length[Select[maxUsing[n], Length[Position[#, "o"]]==k&]], {n, 12}, {k, n}]
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Aug 03 2018
STATUS
approved