[go: up one dir, main page]

login
Search: a278769 -id:a278769
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = [x^n] exp(Sum_{k>=1} x^k*(1 + (n - 3)*x^k)/(k*(1 - x^k)^3)).
+10
5
1, 1, 3, 10, 40, 150, 616, 2456, 10102, 41400, 171526, 712111, 2972115, 12434993, 52195414, 219567909, 925704792, 3909841659, 16541598215, 70085877919, 297347922785, 1263046810334, 5370930049915, 22861883482838, 97402827429118, 415332438952517, 1772380322197432
OFFSET
0,3
COMMENTS
For n > 2, a(n) is the n-th term of the Euler transform of n-gonal numbers.
FORMULA
a(n) ~ c * d^n / sqrt(n), where d = 4.3505530790182509701639869563721679988879373943131559534408716195123... and c = 0.2276354216252041005336767937139336687746108521151301186102034... - Vaclav Kotesovec, Aug 18 2018
MATHEMATICA
Table[SeriesCoefficient[Exp[Sum[x^k (1 + (n - 3) x^k)/(k (1 - x^k)^3), {k, 1, n}]], {x, 0, n}], {n, 0, 26}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Aug 18 2018
STATUS
approved
Expansion of Product_{k>=1} 1/((1 - x^(2*k-1))^(k*(5*k-3)/2)*(1 - x^(2*k))^(k*(5*k+3)/2)).
+10
3
1, 1, 5, 12, 35, 81, 208, 475, 1123, 2505, 5617, 12192, 26368, 55797, 117255, 242660, 498126, 1010515, 2033662, 4053214, 8017622, 15729219, 30643069, 59268267, 113898873, 217480476, 412813600, 779042099, 1462188257, 2729852845, 5070966794, 9373909586, 17247473718
OFFSET
0,3
COMMENTS
Euler transform of the generalized heptagonal numbers (A085787).
LINKS
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Heptagonal Number
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^A085787(k).
a(n) ~ exp(Pi * (2/3)^(5/4) * n^(3/4) + 5*Zeta(3) * sqrt(3*n) / (2^(3/2) * Pi^2) - (75*3^(1/4) * Zeta(3)^2 / (2^(13/4) * Pi^5) + Pi / (2^(17/4) * 3^(3/4))) * n^(1/4) + 375 * Zeta(3)^3 / (8*Pi^8) - 5*Zeta(3) / (64*Pi^2) + 1/12) * Pi^(1/12) / (A * 2^(11/6) * 3^(7/48) * n^(31/48)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Nov 07 2017
MATHEMATICA
nmax = 32; CoefficientList[Series[Product[1/((1 - x^(2 k - 1))^(k (5 k - 3)/2) (1 - x^(2 k))^(k (5 k + 3)/2)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (5 d (d + 1)/8 + (-1)^d (2 d + 1)/16 - 1/16), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 06 2017
STATUS
approved
Expansion of Product_{k>=1} 1/(1 - x^k)^((5*k-1)*binomial(k+2,3)/4).
+10
3
1, 1, 10, 45, 185, 710, 2766, 10270, 37444, 132765, 462327, 1579563, 5311361, 17584084, 57414594, 185032557, 589183035, 1854974066, 5778722817, 17823440534, 54458411332, 164917654587, 495219323844, 1475145786950, 4360576440676, 12796007418881, 37287660835368, 107930276062786
OFFSET
0,3
COMMENTS
Euler transform of A002418.
LINKS
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^A002418(k).
G.f.: exp(Sum_{k>=1} x^k*(1 + 4*x^k)/(k*(1 - x^k)^5)).
a(n) ~ (5/7)^(703/8640)/(2 * 3^(2143/2880) * n^(5023/8640) * Pi^(17/1440)) * exp(-1/144 + (1/12-Zeta'(-1))/12 - (21 * Zeta(3))/(400 * Pi^2) + (62921 * Zeta(5))/(80000 * Pi^4) - (194481 * Zeta(3) * Zeta(5)^2)/(50 * Pi^12) - (200120949 * Zeta(5)^3)/(1250 * Pi^14) + (28594081676916 * Zeta(5)^5)/(3125 * Pi^24) + (7 * Zeta'(-3))/12 + ((-343 * (7/5)^(1/6) * Pi)/(96000 * sqrt(3)) + (147 * (7/5)^(1/6) * sqrt(3) * Zeta(3) * Zeta(5))/(10 * Pi^7) + (1058841 * (7/5)^(1/6) * sqrt(3) * Zeta(5)^2)/(2000 * Pi^9) - (18211006359 * (7/5)^(1/6) * sqrt(3) * Zeta(5)^4)/(500 * Pi^19)) * n^(1/6) + (-((7/5)^(1/3) * Zeta(3))/(4 * Pi^2) - (1029 * (7/5)^(1/3) * Zeta(5))/(200 * Pi^4) + (10890936 * (7/5)^(1/3) * Zeta(5)^3)/(25 * Pi^14)) * n^(1/3) + ((7 * sqrt(7/15) * Pi)/120 - (9261 * sqrt(21/5) * Zeta(5)^2)/(5 * Pi^9)) * sqrt(n) + ((63 * (7/5)^(2/3) * Zeta(5))/(2 * Pi^4)) * n^(2/3) + ((2 * sqrt(3) * Pi)/(5^(5/6) * 7^(1/6))) * n^(5/6)). - Vaclav Kotesovec, Jul 28 2018
MAPLE
a:=series(mul(1/(1-x^k)^((5*k-1)*binomial(k+2, 3)/4), k=1..100), x=0, 28): seq(coeff(a, x, n), n=0..27); # Paolo P. Lava, Apr 02 2019
MATHEMATICA
nmax = 27; CoefficientList[Series[Product[1/(1 - x^k)^((5 k - 1) Binomial[k + 2, 3]/4), {k, 1, nmax}], {x, 0, nmax}], x]
nmax = 27; CoefficientList[Series[Exp[Sum[x^k (1 + 4 x^k)/(k (1 - x^k)^5), {k, 1, nmax}]], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (d + 1) (d + 2) (5 d - 1)/24, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 27}]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jul 19 2018
STATUS
approved

Search completed in 0.006 seconds