OFFSET
0,3
COMMENTS
Euler transform of the generalized pentagonal numbers (A001318).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..5000
N. J. A. Sloane, Transforms
Eric Weisstein's World of Mathematics, Pentagonal Number
FORMULA
G.f.: Product_{k>=1} 1/(1 - x^k)^A001318(k).
a(n) ~ exp(Pi * 2^(5/4) / (3*5^(1/4)) * n^(3/4) + 3*Zeta(3) * sqrt(5*n) / (2^(3/2) * Pi^2) + (Pi/48 - 45*Zeta(3)^2 / (8*Pi^5)) * (5*n/2)^(1/4) + 225*Zeta(3)^3 / (8*Pi^8) - 11*Zeta(3) / (64*Pi^2))/ (2^(95/48) * 5^(1/8) * n^(5/8)). - Vaclav Kotesovec, Nov 07 2017
MATHEMATICA
nmax = 34; CoefficientList[Series[Product[1/((1 - x^(2 k - 1))^(k (3 k - 1)/2) (1 - x^(2 k))^(k (3 k + 1)/2)), {k, 1, nmax}], {x, 0, nmax}], x]
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d Ceiling[d/2] Ceiling[(3 d + 1)/2]/2, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 34}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 05 2017
STATUS
approved