[go: up one dir, main page]

login
Search: a270946 -id:a270946
     Sort: relevance | references | number | modified | created      Format: long | short | data
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 229", based on the 5-celled von Neumann neighborhood.
+10
1
1, 9, 13, 53, 70, 174, 194, 383, 435, 759, 831, 1296, 1392, 2040, 2137, 2949, 3153, 4254, 4418, 5770, 6042, 7674, 7938, 9891, 10271, 12647, 13120, 15828, 16304, 19413, 19941, 23481, 24158, 28218, 28991, 33439, 34247, 39300, 40188, 45792, 46765, 53013, 54170
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=229; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A270946.
KEYWORD
nonn,easy
AUTHOR
Robert Price, Mar 26 2016
STATUS
approved
First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 229", based on the 5-celled von Neumann neighborhood.
+10
1
7, -4, 36, -23, 87, -84, 169, -137, 272, -252, 393, -369, 552, -551, 715, -608, 897, -937, 1188, -1080, 1360, -1368, 1689, -1573, 1996, -1903, 2235, -2232, 2633, -2581, 3012, -2863, 3383, -3287, 3675, -3640, 4245, -4165, 4716, -4631, 5275, -5091, 5683, -5592
OFFSET
0,1
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=229; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[on[[i+1]]-on[[i]], {i, 1, Length[on]-1}] (* Difference at each stage *)
CROSSREFS
Cf. A270946.
KEYWORD
sign,easy
AUTHOR
Robert Price, Mar 26 2016
STATUS
approved
Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 229", based on the 5-celled von Neumann neighborhood.
+10
0
1, 8, 40, 189, 812, 3540, 14224, 58672, 235520, 943648, 3785836, 15139112, 60577080, 242359424, 969552509, 3878246660
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=229; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Part[on, 2^Range[0, Log[2, stages]]] (* Extract relevant terms *)
CROSSREFS
Cf. A270946.
KEYWORD
nonn,more
AUTHOR
Robert Price, Mar 26 2016
EXTENSIONS
a(8)-a(15) from Lars Blomberg, Jun 07 2016
STATUS
approved

Search completed in 0.006 seconds