[go: up one dir, main page]

login
Search: a262997 -id:a262997
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = floor(n*(n+2)/9).
+10
1
0, 0, 0, 1, 2, 3, 5, 7, 8, 11, 13, 15, 18, 21, 24, 28, 32, 35, 40, 44, 48, 53, 58, 63, 69, 75, 80, 87, 93, 99, 106, 113, 120, 128, 136, 143, 152, 160, 168, 177, 186, 195, 205, 215, 224, 235, 245, 255, 266, 277, 288, 300, 312, 323, 336, 348, 360, 373, 386
OFFSET
0,5
FORMULA
a(n) = (A005563(n) - A005563(n) mod 9)/9. Note that A005563(n) mod 9 has period 9: repeat [0, 3, 8, 6, 6, 8, 3, 0, 8].
Interleave A240438(n+1), A262523(n), A005563(n).
From Colin Barker, Jun 02 2017: (Start)
G.f.: x^3*(1 + x^3 - x^5 + 2*x^6 - x^7) / ((1 - x)^3*(1 + x + x^2)*(1 + x^3 + x^6)).
a(n) = 2*a(n-1) - a(n-2) + a(n-9) - 2*a(n-10) + a(n-11) for n>10.
(End)
a(n) = floor(n*(n+2)/9). - Alois P. Heinz, Jun 02 2017
EXAMPLE
a(3) = (15-6)/9 = 1.
MATHEMATICA
Table[Floor[(n(n+2))/9], {n, 0, 60}] (* or *) LinearRecurrence[{2, -1, 0, 0, 0, 0, 0, 0, 1, -2, 1}, {0, 0, 0, 1, 2, 3, 5, 7, 8, 11, 13}, 60] (* Harvey P. Dale, Jan 09 2023 *)
PROG
(PARI) concat(vector(3), Vec(x^3*(1 + x^3 - x^5 + 2*x^6 - x^7) / ((1 - x)^3*(1 + x + x^2)*(1 + x^3 + x^6)) + O(x^100))) \\ Colin Barker, Jun 02 2017
(PARI) a(n)=n*(n+2)\9 \\ Charles R Greathouse IV, Jun 06 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jun 02 2017
EXTENSIONS
Definition simplified by Alois P. Heinz, Jun 02 2017
STATUS
approved
a(n+3) = a(n) + 24*n + 32, a(0)=0, a(1)=3, a(2)=13.
+10
1
0, 3, 13, 32, 59, 93, 136, 187, 245, 312, 387, 469, 560, 659, 765, 880, 1003, 1133, 1272, 1419, 1573, 1736, 1907, 2085, 2272, 2467, 2669, 2880, 3099, 3325, 3560, 3803, 4053, 4312, 4579, 4853, 5136, 5427, 5725
OFFSET
0,2
COMMENTS
Difference table:
0, 3, 13, 32, 59, 93, 136, 187, ...
3, 10, 19, 27, 34, 43, 51, ... = b(n)
7, 9, 8, 7, 9, 8, ... .
The sequence of last decimal digits of a(n) has period 15 and contain no 1's, 4's or 8's.
a(n) is e(n), hexasection, in A262397(n-1).
b(n) mod 9 is of period 9: 3, 1, 1, 0, 7, 7, 6, 4, 4.
FORMULA
a(-n) = A262997(n).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
Trisections: a(3n) = 4*n*(9*n-1), a(3n+1) = 3 + 20*n + 36*n^2, a(3n+2) = 13 + 44*n + 36*n^2.
a(n+15) = a(n) + 40*(22+3*n).
G.f.: x*(1 + x)*(3 + 4*x + 5*x^2) / ((1 - x)^3*(1 + x + x^2)). - Colin Barker, Jun 20 2018
MATHEMATICA
CoefficientList[ Series[ -x (5^3 +9x^2 +7x +3)/(x -1)^3 (x^2 +x +1), {x, 0, 40}], x] (* or *)LinearRecurrence[{2, -1, 1, -2, 1}, {0, 3, 13, 32, 59, 93}, 41] (* Robert G. Wilson v, Jun 20 2018 *)
PROG
(PARI) concat(0, Vec(x*(1 + x)*(3 + 4*x + 5*x^2) / ((1 - x)^3*(1 + x + x^2)) + O(x^40))) \\ Colin Barker, Jun 20 2018
CROSSREFS
Cf. A262997, A262397. A000290, A240438, A016754, A262523 (hexasections). Cf. A130518.
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Jun 20 2018
STATUS
approved

Search completed in 0.008 seconds