[go: up one dir, main page]

login
A130518
a(n) = Sum_{k=0..n} floor(k/3). (Partial sums of A002264.)
20
0, 0, 0, 1, 2, 3, 5, 7, 9, 12, 15, 18, 22, 26, 30, 35, 40, 45, 51, 57, 63, 70, 77, 84, 92, 100, 108, 117, 126, 135, 145, 155, 165, 176, 187, 198, 210, 222, 234, 247, 260, 273, 287, 301, 315, 330, 345, 360, 376, 392, 408, 425, 442, 459, 477, 495, 513, 532, 551, 570
OFFSET
0,5
COMMENTS
Complementary with A130481 regarding triangular numbers, in that A130481(n) + 3*a(n) = n(n+1)/2 = A000217(n).
Apart from offset, the same as A062781. - R. J. Mathar, Jun 13 2008
Apart from offset, the same as A001840. - Michael Somos, Sep 18 2010
The sum of any three consecutive terms is a triangular number. - J. M. Bergot, Nov 27 2014
FORMULA
G.f.: x^3 / ((1-x^3)*(1-x)^2).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5).
a(n) = (1/2)*floor(n/3)*(2*n - 1 - 3*floor(n/3)) = A002264(n)*(2n - 1 - 3*A002264(n))/2.
a(n) = (1/2)*A002264(n)*(n - 1 + A010872(n)).
a(n) = round(n*(n-1)/6) = round((n^2-n-1)/6) = floor(n*(n-1)/6) = ceiling((n+1)*(n-2)/6). - Mircea Merca, Nov 28 2010
a(n) = a(n-3) + n - 2, n > 2. - Mircea Merca, Nov 28 2010
a(n) = A214734(n, 1, 3). - Renzo Benedetti, Aug 27 2012
a(3n) = A000326(n), a(3n+1) = A005449(n), a(3n+2) = 3*A000217(n) = A045943(n). - Philippe Deléham, Mar 26 2013
a(n) = (3*n*(n-1) - (-1)^n*((1+i*sqrt(3))^(n-2) + (1-i*sqrt(3))^(n-2))/2^(n-3) - 2)/18, where i=sqrt(-1). - Bruno Berselli, Nov 30 2014
Sum_{n>=3} 1/a(n) = 20/3 - 2*Pi/sqrt(3). - Amiram Eldar, Sep 17 2022
MAPLE
seq(floor(n*(n-1)/6), n=0..60); # Robert Israel, Nov 27 2014
MATHEMATICA
Table[n, {n, 0, 19}, {3}] // Flatten // Accumulate (* Jean-François Alcover, Jun 05 2013 *)
PROG
(Sage) [floor(binomial(n, 2)/3) for n in range(0, 60)] # Zerinvary Lajos, Dec 01 2009
(Magma) [Round(n*(n-1)/6): n in [0..60]]; // Vincenzo Librandi, Jun 25 2011
(PARI) a(n)=n*(n-1)\/6 \\ Charles R Greathouse IV, Jun 05 2013
(GAP) List([0..60], n-> Int(n*(n-1)/6)); # G. C. Greubel, Aug 31 2019
KEYWORD
nonn,easy
AUTHOR
Hieronymus Fischer, Jun 01 2007
STATUS
approved