[go: up one dir, main page]

login
A130482
a(n) = Sum_{k=0..n} (k mod 4) (Partial sums of A010873).
28
0, 1, 3, 6, 6, 7, 9, 12, 12, 13, 15, 18, 18, 19, 21, 24, 24, 25, 27, 30, 30, 31, 33, 36, 36, 37, 39, 42, 42, 43, 45, 48, 48, 49, 51, 54, 54, 55, 57, 60, 60, 61, 63, 66, 66, 67, 69, 72, 72, 73, 75, 78, 78, 79, 81, 84, 84, 85, 87, 90, 90, 91, 93, 96, 96, 97, 99, 102, 102, 103, 105
OFFSET
0,3
COMMENTS
Let A be the Hessenberg n X n matrix defined by: A[1,j]=j mod 4, A[i,i]:=1, A[i,i-1]=-1. Then, for n>=1, a(n)=det(A). - Milan Janjic, Jan 24 2010
FORMULA
a(n) = 6*floor(n/4) + A010873(n)*(A010873(n)+1)/2.
G.f.: x*(1 + 2*x + 3*x^2)/((1-x^4)*(1-x)).
a(n) = (1 - (-1)^n - (2*i)*(-i)^n + (2*i)*i^n + 6*n) / 4 where i = sqrt(-1). - Colin Barker, Oct 15 2015
a(n) = 3*n/2 + (n mod 2)* ( (n-1) mod 4 ) - (n mod 2)/2. - Ammar Khatab, Aug 27 2020
E.g.f.: (3*x*exp(x) - 2*sin(x) + sinh(x))/2. - Stefano Spezia, Apr 22 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(4*sqrt(3)) + log(3)/4. - Amiram Eldar, Sep 17 2022
MAPLE
a:=n->add(chrem( [n, j], [1, 4] ), j=1..n):seq(a(n), n=0..70); # Zerinvary Lajos, Apr 07 2009
MATHEMATICA
Table[(6*n +(1-(-1)^n)*(1+2*I^(n+1)))/4, {n, 0, 70}] (* G. C. Greubel, Aug 31 2019 *)
LinearRecurrence[{1, 0, 0, 1, -1}, {0, 1, 3, 6, 6}, 80] (* Harvey P. Dale, Feb 16 2024 *)
PROG
(PARI) a(n) = (1 - (-1)^n - (2*I)*(-I)^n + (2*I)*I^n + 6*n) / 4 \\ Colin Barker, Oct 15 2015
(Magma) I:=[0, 1, 3, 6, 6]; [n le 5 select I[n] else Self(n-1) + Self(n-4) - Self(n-5): n in [1..71]]; // G. C. Greubel, Aug 31 2019
(Sage)
def A130482_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P(x*(1+2*x+3*x^2)/((1-x^4)*(1-x))).list()
A130482_list(70) # G. C. Greubel, Aug 31 2019
(GAP) a:=[0, 1, 3, 6, 6];; for n in [6..71] do a[n]:=a[n-1]+a[n-4]-a[n-5]; od; a; # G. C. Greubel, Aug 31 2019
KEYWORD
nonn,easy
AUTHOR
Hieronymus Fischer, May 29 2007
STATUS
approved