OFFSET
1,3
COMMENTS
n is a palindrome (i.e., a(k) = n for some k) if and only if n = A004086(n). - Reinhard Zumkeller, Mar 10 2002
It seems that if n*reversal(n) is in the sequence then n = 3 or all digits of n are less than 3. - Farideh Firoozbakht, Nov 02 2014
The position of a palindrome within the sequence can be determined almost without calculation: If the palindrome has an even number of digits, prepend a 1 to the front half of the palindrome's digits. If the number of digits is odd, prepend the value of front digit + 1 to the digits from position 2 ... central digit. Examples: 98766789 = a(19876), 515 = a(61), 8206028 = a(9206), 9230329 = a(10230). - Hugo Pfoertner, Aug 14 2015
This sequence is an additive basis of order at most 49, see Banks link. - Charles R Greathouse IV, Aug 23 2015
The order has been reduced from 49 to 3; see the Cilleruelo-Luca and Cilleruelo-Luca-Baxter links. - Jonathan Sondow, Nov 27 2017
See A262038 for the "next palindrome" and A261423 for the "preceding palindrome" functions. - M. F. Hasler, Sep 09 2015
The number of palindromes with d digits is 10 if d = 1, and otherwise it is 9 * 10^(floor((d - 1)/2)). - N. J. A. Sloane, Dec 06 2015
Sequence A033665 tells how many iterations of the Reverse-then-add function A056964 are needed to reach a palindrome; numbers for which this will never happen are Lychrel numbers (A088753) or rather Kin numbers (A023108). - M. F. Hasler, Apr 13 2019
REFERENCES
Karl G. Kröber, "Palindrome, Perioden und Chaoten: 66 Streifzüge durch die palindromischen Gefilde" (1997, Deutsch-Taschenbücher; Bd. 99) ISBN 3-8171-1522-9.
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 71.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Hunki Baek, Sejeong Bang, Dongseok Kim, and Jaeun Lee, A bijection between aperiodic palindromes and connected circulant graphs, arXiv:1412.2426 [math.CO], 2014.
William D. Banks, Derrick N. Hart, and Mayumi Sakata, Almost all palindromes are composite, Math. Res. Lett., Vol. 11, No. 5-6 (2004), pp. 853-868.
William D. Banks, Every natural number is the sum of forty-nine palindromes, arXiv:1508.04721 [math.NT], 2015; Integers, 16 (2016), article A3.
Javier Cilleruelo, Florian Luca and Lewis Baxter, Every positive integer is a sum of three palindromes, Mathematics of Computation, Vol. 87, No. 314 (2018), pp. 3023-3055, arXiv preprint, arXiv:1602.06208 [math.NT], 2017.
Patrick De Geest, World of Numbers.
Kritkhajohn Onphaeng, Tammatada Khemaratchatakumthorn, Phakhinkon Napp Phunphayap, and Prapanpong Pongsriiam, Exact Formulas for the Number of Palindromes in Certain Arithmetic Progressions, Journal of Integer Sequences, Vol. 27 (2024), Article 24.4.8. See p. 2.
Phakhinkon Phunphayap and Prapanpong Pongsriiam, Reciprocal sum of palindromes, arXiv:1803.00161 [math.CA], 2018.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Prapanpong Pongsriiam and Kittipong Subwattanachai, Exact Formulas for the Number of Palindromes up to a Given Positive Integer, Intl. J. of Math. Comp. Sci. (2019) 14:1, 27-46.
E. A. Schmidt, Positive Integer Palindromes. [Cached copy at the Wayback Machine]
Eric Weisstein's World of Mathematics, Palindromic Number.
Wikipedia, Palindromic number.
FORMULA
A136522(a(n)) = 1.
A178788(a(n)) = 0 for n > 9. - Reinhard Zumkeller, Jun 30 2010
A064834(a(n)) = 0. - Reinhard Zumkeller, Sep 18 2013
a(n+1) = A262038(a(n)+1). - M. F. Hasler, Sep 09 2015
Sum_{n>=2} 1/a(n) = A118031. - Amiram Eldar, Oct 17 2020
MAPLE
read transforms; t0:=[]; for n from 0 to 2000 do if digrev(n) = n then t0:=[op(t0), n]; fi; od: t0;
# Alternatively, to get all palindromes with <= N digits in the list "Res":
N:=5;
Res:= $0..9:
for d from 2 to N do
if d::even then
m:= d/2;
Res:= Res, seq(n*10^m + digrev(n), n=10^(m-1)..10^m-1);
else
m:= (d-1)/2;
Res:= Res, seq(seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1);
fi
od: Res:=[Res]: # Robert Israel, Aug 10 2014
# A variant: Gets all base-10 palindromes with exactly d digits, in the list "Res"
d:=4:
if d=1 then Res:= [$0..9]:
elif d::even then
m:= d/2:
Res:= [seq(n*10^m + digrev(n), n=10^(m-1)..10^m-1)]:
else
m:= (d-1)/2:
Res:= [seq(seq(n*10^(m+1)+y*10^m+digrev(n), y=0..9), n=10^(m-1)..10^m-1)]:
fi:
Res; # N. J. A. Sloane, Oct 18 2015
isA002113 := proc(n)
simplify(digrev(n) = n) ;
end proc: # R. J. Mathar, Sep 09 2015
MATHEMATICA
palQ[n_Integer, base_Integer] := Module[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; (* then to generate any base-b sequence for 1 < b < 37, replace the 10 in the following instruction with b: *) Select[Range[0, 1000], palQ[#, 10] &]
base10Pals = {0}; r = 2; Do[Do[AppendTo[base10Pals, n * 10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]], {n, 10^(e - 1), 10^e - 1}]; Do[AppendTo[base10Pals, n * 10^IntegerLength[n] + FromDigits@Reverse@IntegerDigits[n]], {n, 10^(e - 1), 10^e - 1}], {e, r}]; base10Pals (* Arkadiusz Wesolowski, May 04 2012 *)
nthPalindromeBase[n_, b_] := Block[{q = n + 1 - b^Floor[Log[b, n + 1 - b^Floor[Log[b, n/b]]]], c = Sum[Floor[Floor[n/((b + 1) b^(k - 1) - 1)]/(Floor[n/((b + 1) b^(k - 1) - 1)] - 1/b)] - Floor[Floor[n/(2 b^k - 1)]/(Floor[n/(2 b^k - 1)] - 1/ b)], {k, Floor[Log[b, n]]}]}, Mod[q, b] (b + 1)^c * b^Floor[Log[b, q]] + Sum[Floor[Mod[q, b^(k + 1)]/b^k] b^(Floor[Log[b, q]] - k) (b^(2 k + c) + 1), {k, Floor[Log[b, q]]}]] (* after the work of Eric A. Schmidt, works for all integer bases b > 2 *)
Array[nthPalindromeBase[#, 10] &, 61, 0] (* please note that Schmidt uses a different, a more natural and intuitive offset, that of a(1) = 1. - Robert G. Wilson v, Sep 22 2014 and modified Nov 28 2014 *)
Select[Range[10^3], PalindromeQ] (* Michael De Vlieger, Nov 27 2017 *)
PROG
(PARI) is_A002113(n)=Vecrev(n=digits(n))==n \\ M. F. Hasler, Nov 17 2008, updated Apr 26 2014, Jun 19 2018
(PARI) is(n)=n=digits(n); for(i=1, #n\2, if(n[i]!=n[#n+1-i], return(0))); 1 \\ Charles R Greathouse IV, Jan 04 2013
(PARI) a(n)={my(d, i, r); r=vector(#digits(n-10^(#digits(n\11)))+#digits(n\11)); n=n-10^(#digits(n\11)); d=digits(n); for(i=1, #d, r[i]=d[i]; r[#r+1-i]=d[i]); sum(i=1, #r, 10^(#r-i)*r[i])} \\ David A. Corneth, Jun 06 2014
(PARI) \\ recursive--feed an element a(n) and it gives a(n+1)
nxt(n)=my(d=digits(n)); i=(#d+1)\2; while(i&&d[i]==9, d[i]=0; d[#d+1-i]=0; i--); if(i, d[i]++; d[#d+1-i]=d[i], d=vector(#d+1); d[1]=d[#d]=1); sum(i=1, #d, 10^(#d-i)*d[i]) \\ David A. Corneth, Jun 06 2014
(PARI) \\ feed a(n), returns n.
inv(n)={my(d=digits(n)); q=ceil(#d/2); sum(i=1, q, 10^(q-i)*d[i])+10^floor(#d/2)} \\ David A. Corneth, Jun 18 2014
(PARI) inv_A002113(P)={P\(P=10^(logint(P+!P, 10)\/2))+P} \\ index n of palindrome P = a(n), much faster than above: no sum is needed. - M. F. Hasler, Sep 09 2018
(PARI) A002113(n, L=logint(n, 10))=(n-=L=10^max(L-(n<11*10^(L-1)), 0))*L+fromdigits(Vecrev(digits(if(n<L, n, n\10)))) \\ M. F. Hasler, Sep 11 2018
(Python) # edited by M. F. Hasler, Jun 19 2018
def A002113_list(nMax):
mlist=[]
for n in range(nMax+1):
mstr=str(n)
if mstr==mstr[::-1]:
mlist.append(n)
return mlist # Bill McEachen, Dec 17 2010
(Python)
from itertools import chain
A002113 = sorted(chain(map(lambda x:int(str(x)+str(x)[::-1]), range(1, 10**3)), map(lambda x:int(str(x)+str(x)[-2::-1]), range(10**3)))) # Chai Wah Wu, Aug 09 2014
(Python)
from itertools import chain, count
A002113 = chain(k for k in count(0) if str(k) == str(k)[::-1])
print([next(A002113) for k in range(60)]) # Jan P. Hartkopf, Apr 10 2021
(Python) is_A002113 = lambda n: (s:=str(n))[::-1]==s # M. F. Hasler, May 23 2024
(Python)
from math import log10, floor
def A002113(n):
if n < 2: return 0
P = 10**floor(log10(n//2)); M = 11*P
s = str(n - (P if n < M else M-P))
return int(s + s[-2 if n < M else -1::-1]) # M. F. Hasler, Jun 06 2024
(Haskell)
a002113 n = a002113_list !! (n-1)
a002113_list = filter ((== 1) . a136522) [1..] -- Reinhard Zumkeller, Oct 09 2011
(Haskell)
import Data.List.Ordered (union)
a002113_list = union a056524_list a056525_list -- Reinhard Zumkeller, Jul 29 2015, Dec 28 2011
(Magma) [n: n in [0..600] | Intseq(n, 10) eq Reverse(Intseq(n, 10))]; // Vincenzo Librandi, Nov 03 2014
(SageMath)
[n for n in (0..515) if Word(n.digits()).is_palindrome()] # Peter Luschny, Sep 13 2018
(GAP) Filtered([0..550], n->ListOfDigits(n)=Reversed(ListOfDigits(n))); # Muniru A Asiru, Mar 08 2019
(Scala) def palQ(n: Int, b: Int = 10): Boolean = n - Integer.parseInt(n.toString.reverse) == 0
(0 to 999).filter(palQ(_)) // Alonso del Arte, Nov 10 2019
CROSSREFS
Palindromes in bases 2 through 11: A006995 and A057148, A014190 and A118594, A014192 and A118595, A029952 and A118596, A029953 and A118597, A029954 and A118598, A029803 and A118599, A029955 and A118600, this sequence, A029956. Also A262065 (base 60), A262069 (subsequence).
Palindromic-pi: A136687.
Minimal number of palindromes that add to n using greedy algorithm: A088601.
Minimal number of palindromes that add to n: A261675.
Subsequence: A110745.
KEYWORD
nonn,base,easy,nice,core
AUTHOR
STATUS
approved