[go: up one dir, main page]

login
Search: a261732 -id:a261732
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number T(n,k) of partitions of n where each part i is marked with a word of length i over a k-ary alphabet whose letters appear in alphabetical order and all k letters occur at least once in the partition; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
+10
16
1, 0, 1, 0, 2, 3, 0, 3, 12, 10, 0, 5, 40, 81, 47, 0, 7, 104, 396, 544, 246, 0, 11, 279, 1751, 4232, 4350, 1602, 0, 15, 654, 6528, 25100, 44475, 36744, 11481, 0, 22, 1577, 23892, 136516, 369675, 512787, 352793, 95503, 0, 30, 3560, 80979, 666800, 2603670, 5413842, 6170486, 3641992, 871030
OFFSET
0,5
COMMENTS
T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = 0 for k>n.
LINKS
FORMULA
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A261718(n,k-i).
EXAMPLE
A(3,2) = 12: 3aab, 3abb, 2aa1b, 2ab1a, 2ab1b, 2bb1a, 1a1a1b, 1a1b1a, 1a1b1b, 1b1a1a, 1b1a1b, 1b1b1a.
Triangle T(n,k) begins:
1
0, 1;
0, 2, 3;
0, 3, 12, 10;
0, 5, 40, 81, 47;
0, 7, 104, 396, 544, 246;
0, 11, 279, 1751, 4232, 4350, 1602;
0, 15, 654, 6528, 25100, 44475, 36744, 11481;
0, 22, 1577, 23892, 136516, 369675, 512787, 352793, 95503;
...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1))))
end:
T:= (n, k)-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..10);
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k]*Binomial[i + k - 1, k - 1]]]]; T[n_, k_] := Sum[b[n, n, k - i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 21 2017, translated from Maple *)
CROSSREFS
Columns k=0-10 give: A000007, A000041 (for n>0), A293366, A293367, A293368, A293369, A293370, A293371, A293372, A293373, A293374.
Row sums give A035341.
Main diagonal gives A005651.
T(2n,n) gives A261732.
Cf. A060642, A261718, A261781 (same for compositions).
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 29 2015
STATUS
approved

Search completed in 0.007 seconds