[go: up one dir, main page]

login
A293373
Number of partitions of n where each part i is marked with a word of length i over a nonary alphabet whose letters appear in alphabetical order and all nine letters occur at least once in the partition.
2
871030, 41488902, 1106315145, 22148014950, 366764207877, 5369282570448, 71433531608103, 887892874465104, 10433233718235522, 117558189248146187, 1278057588056171991, 13515236446777067727, 139538852470920866367, 1413457490580676488090, 14081562892529164704060
OFFSET
9,1
LINKS
FORMULA
a(n) ~ c * 9^n, where c = 3.23950351986835655716873222462341048089067679826... - Vaclav Kotesovec, Oct 11 2017
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1, k)+`if`(i>n, 0, b(n-i, i, k)*binomial(i+k-1, k-1))))
end:
a:= n-> (k-> add(b(n$2, k-i)*(-1)^i*binomial(k, i), i=0..k))(9):
seq(a(n), n=9..30);
CROSSREFS
Column k=9 of A261719.
Sequence in context: A034609 A182450 A362793 * A306868 A223886 A204509
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 07 2017
STATUS
approved