[go: up one dir, main page]

login
Search: a259196 -id:a259196
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of partitions of n into ten primes.
+10
23
1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 8, 9, 11, 11, 14, 16, 18, 20, 25, 24, 31, 33, 38, 39, 48, 47, 59, 59, 69, 69, 87, 80, 102, 98, 118, 114, 143, 131, 168, 154, 191, 179, 227, 200, 261, 236, 297, 268, 344, 300, 396, 345, 442, 390, 509, 431, 576, 493, 641, 551, 729
OFFSET
20,4
FORMULA
a(n) = [x^n y^10] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019
a(n) = Sum_{r=1..floor(n/10)} Sum_{q=r..floor((n-r)/9)} Sum_{p=q..floor((n-q-r)/8)} Sum_{o=p..floor((n-p-q-r)/7)} Sum_{m=o..floor((n-o-p-q-r)/6)} Sum_{l=m..floor((n-m-o-p-q-r)/5)} Sum_{k=l..floor((n-l-m-o-p-q-r)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q-r)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q-r)/2)} A010051(r) * A010051(q) * A010051(p) * A010051(o) * A010051(m) * A010051(l) * A010051(k) * A010051(j) * A010051(i) * A010051(n-i-j-k-l-m-o-p-q-r). - Wesley Ivan Hurt, Jul 13 2019
EXAMPLE
a(23) = 2 because there are 2 partitions of 23 into ten primes: [2,2,2,2,2,2,2,2,2,5] and [2,2,2,2,2,2,2,3,3,3].
PROG
(Magma) [#RestrictedPartitions(k, 10, Set(PrimesUpTo(1000))):k in [20..80]] ; // Marius A. Burtea, Jul 13 2019
CROSSREFS
Column k=10 of A117278.
Number of partitions of n into r primes for r = 1-9: A010051, A061358, A068307, A259194, A259195, A259196, A259197, A259198, A259200.
KEYWORD
nonn,easy
AUTHOR
Doug Bell, Jun 20 2015
STATUS
approved
Number of partitions of n into nine primes.
+10
22
1, 1, 1, 2, 2, 3, 4, 4, 5, 7, 7, 9, 10, 11, 12, 16, 16, 20, 21, 24, 26, 33, 31, 39, 39, 47, 46, 59, 53, 69, 65, 80, 77, 98, 85, 114, 104, 131, 118, 154, 133, 179, 155, 200, 177, 236, 196, 268, 227, 300, 256
OFFSET
18,4
FORMULA
a(n) = [x^n y^9] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019
a(n) = Sum_{q=1..floor(n/9)} Sum_{p=q..floor((n-q)/8)} Sum_{o=p..floor((n-p-q)/7)} Sum_{m=o..floor((n-o-p-q)/6)} Sum_{l=m..floor((n-m-o-p-q)/5)} Sum_{k=l..floor((n-l-m-o-p-q)/4)} Sum_{j=k..floor((n-k-l-m-o-p-q)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p-q)/2)} A010051(q) * A010051(p) * A010051(o) * A010051(m) * A010051(l) * A010051(k) * A010051(j) * A010051(i) * A010051(n-i-j-k-l-m-o-p-q). - Wesley Ivan Hurt, Jul 13 2019
EXAMPLE
a(23) = 3 because there are 3 partitions of 23 into nine primes: [2,2,2,2,2,2,2,2,7], [2,2,2,2,2,2,3,3,5] and [2,2,2,2,3,3,3,3,3].
MAPLE
N:= 100: # to get a(0) to a(N)
Primes:= select(isprime, [$1..N]):
np:= nops(Primes):
for j from 0 to np do g[0, j]:= 1 od:
for n from 1 to 9 do
g[n, 0]:= 0:
for j from 1 to np do
g[n, j]:= convert(series(add(g[k, j-1]
*x^((n-k)*Primes[j]), k=0..n), x, N+1), polynom)
od
od:
seq(coeff(g[9, np], x, i), i=18..N) # Robert Israel, Jun 21 2015
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Length[#]==9&&AllTrue[ #, PrimeQ]&]], {n, 18, 70}] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jul 31 2016 *)
PROG
(PARI) a(n) = {nb = 0; forpart(p=n, if (#p && (#select(x->isprime(x), Vec(p)) == #p), nb+=1), , [9, 9]); nb; } \\ Michel Marcus, Jun 21 2015
(Magma) [#RestrictedPartitions(k, 9, Set(PrimesUpTo(1000))):k in [18..70]] ; // Marius A. Burtea, Jul 13 2019
CROSSREFS
Column k=9 of A117278.
Number of partitions of n into r primes for r = 1..10: A010051, A061358, A068307, A259194, A259195, A259196, A259197, A259198, this sequence, A259201.
Cf. A000040.
KEYWORD
nonn,easy
AUTHOR
Doug Bell, Jun 20 2015
STATUS
approved
Triangle read by rows: T(n,k) is the number of partitions of n into k prime parts (n>=2, 1<=k<=floor(n/2)).
+10
21
1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 2, 1, 1, 1, 1, 0, 2, 2, 1, 0, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 0, 2, 1, 3, 2, 1, 1, 0, 1, 3, 2, 3, 2, 1, 0, 2, 2, 3, 3, 2, 1, 1, 1, 0, 4, 3, 3, 3, 2, 1, 0, 2, 2, 4, 3, 4, 2, 1, 1, 1, 1, 3, 4, 5, 3, 3, 2, 1, 0, 2, 2, 6, 4, 4, 4, 2, 1, 1, 0, 1, 5, 3, 6
OFFSET
2,19
COMMENTS
Row n has floor(n/2) terms. Row sums yield A000607. T(n,1) = A010051(n) (the characteristic function of the primes). T(n,2) = A061358(n). Sum(k*T(n,k), k>=1) = A084993(n).
LINKS
FORMULA
G.f.: G(t,x) = -1+1/product(1-tx^(p(j)), j=1..infinity), where p(j) is the j-th prime.
EXAMPLE
T(12,3) = 2 because we have [7,3,2] and [5,5,2].
Triangle starts:
1;
1;
0, 1;
1, 1;
0, 1, 1;
1, 1, 1;
0, 1, 1, 1;
0, 1, 2, 1;
...
MAPLE
g:=1/product(1-t*x^(ithprime(j)), j=1..30): gser:=simplify(series(g, x=0, 30)): for n from 2 to 22 do P[n]:=sort(coeff(gser, x^n)) od: for n from 2 to 22 do seq(coeff(P[n], t^j), j=1..floor(n/2)) od; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember;
`if`(n=0, [1], `if`(i<1, [], zip((x, y)->x+y, b(n, i-1),
[0, `if`(ithprime(i)>n, [], b(n-ithprime(i), i))[]], 0)))
end:
T:= n-> subsop(1=NULL, b(n, numtheory[pi](n)))[]:
seq(T(n), n=2..25); # Alois P. Heinz, Nov 16 2012
MATHEMATICA
(* As triangle: *) nn=20; a=Product[1/(1-y x^i), {i, Table[Prime[n], {n, 1, nn}]}]; Drop[CoefficientList[Series[a, {x, 0, nn}], {x, y}], 2, 1]//Grid (* Geoffrey Critzer, Oct 30 2012 *)
PROG
(PARI)
parts(n, pred)={prod(k=1, n, if(pred(k), 1/(1-y*x^k) + O(x*x^n), 1))}
{my(n=15); apply(p->Vecrev(p/y), Vec(parts(n, isprime)-1))} \\ Andrew Howroyd, Dec 28 2017
CROSSREFS
Row sums give A000607.
T(A000040(n),n) gives A259254(n).
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Mar 07 2006
STATUS
approved
Number of partitions of n into seven primes.
+10
20
1, 1, 1, 2, 2, 3, 4, 4, 4, 6, 6, 8, 8, 9, 10, 14, 12, 16, 16, 19, 19, 26, 22, 30, 26, 34, 31, 43, 33, 48, 42, 56, 47, 66, 51, 77, 60, 84, 68, 99, 73, 112, 86, 123, 95, 143, 103, 162, 116, 174, 131, 200, 137, 220, 156, 241, 171, 270, 180, 300, 202, 322, 223, 359
OFFSET
14,4
FORMULA
a(n) = Sum_{o=1..floor(n/7)} Sum_{m=o..floor((n-o)/6)} Sum_{l=m..floor((n-m-o)/5)} Sum_{k=l..floor((n-l-m-o)/4)} Sum_{j=k..floor((n-k-l-m-o)/3)} Sum_{i=j..floor((n-j-k-l-m-o)/2)} A010051(i) * A010051(j) * A010051(k) * A010051(l) * A010051(m) * A010051(o) * A010051(n-i-j-k-l-m-o). - Wesley Ivan Hurt, Apr 17 2019
a(n) = [x^n y^7] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019
EXAMPLE
a(17) = 2 because there are 2 partitions of 17 into seven primes: [2,2,2,2,2,2,5] and [2,2,2,2,3,3,3].
CROSSREFS
Column k=7 of A117278.
Number of partitions of n into r primes for r = 1-10: A010051, A061358, A068307, A259194, A259195, A259196, this sequence, A259198, A259200, A259201.
Cf. A000040.
KEYWORD
nonn,easy
AUTHOR
Doug Bell, Jun 20 2015
STATUS
approved
Number of partitions of n into eight primes.
+10
20
1, 1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 8, 10, 9, 12, 14, 16, 16, 21, 19, 26, 26, 31, 30, 39, 34, 46, 43, 53, 48, 65, 56, 77, 66, 85, 77, 104, 84, 118, 99, 133, 112, 155, 123, 177, 143, 196, 162, 227, 174, 256, 200, 282, 220, 318, 241, 360, 270, 389, 300, 442, 322
OFFSET
16,4
FORMULA
a(n) = Sum_{p=1..floor(n/8)} Sum_{o=p..floor((n-p)/7)} Sum_{m=o..floor((n-o-p)/6)} Sum_{l=m..floor((n-m-o-p)/5)} Sum_{k=l..floor((n-l-m-o-p)/4)} Sum_{j=k..floor((n-k-l-m-o-p)/3)} Sum_{i=j..floor((n-j-k-l-m-o-p)/2)} A010051(i) * A010051(j) * A010051(k) * A010051(l) * A010051(m) * A010051(o) * A010051(p) * A010051(n-i-j-k-l-m-o-p). - Wesley Ivan Hurt, Apr 17 2019
a(n) = [x^n y^8] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019
a(n) = A326455(n)/n for n > 0. - Wesley Ivan Hurt, Jul 06 2019
EXAMPLE
a(20) = 2 because there are 2 partitions of 20 into eight primes: [2,2,2,2,2,2,3,5] and [2,2,2,2,3,3,3,3].
CROSSREFS
Column k=8 of A117278.
Number of partitions of n into r primes for r = 1-10: A010051, A061358, A068307, A259194, A259195, A259196, A259197, this sequence, A259200, A259201.
Cf. A000040.
KEYWORD
nonn,easy
AUTHOR
Doug Bell, Jun 20 2015
STATUS
approved
Number of partitions of n into four primes.
+10
19
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 2, 3, 3, 4, 4, 6, 3, 6, 5, 7, 5, 9, 5, 11, 7, 11, 7, 13, 6, 14, 9, 15, 8, 18, 9, 21, 10, 19, 11, 24, 10, 26, 12, 26, 13, 30, 12, 34, 15, 33, 16, 38, 14, 41, 17, 41, 16, 45, 16, 50, 19, 47, 21, 56, 20, 61, 20, 57
OFFSET
0,12
FORMULA
a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} A010051(i) * A010051(j) * A010051(k) * A010051(n-i-j-k). - Wesley Ivan Hurt, Apr 17 2019
a(n) = [x^n y^4] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019
EXAMPLE
a(17) = 3 because 17 can be written as the sum of four primes in exactly three ways: 2+2+2+11, 2+3+5+7 and 2+5+5+5.
MATHEMATICA
a[n_] := Length@ IntegerPartitions[n, {4}, Prime@ Range@ PrimePi@ n]; a /@
Range[0, 100] (* Giovanni Resta, Jun 21 2015 *)
Table[Count[IntegerPartitions[n, {4}], _?(AllTrue[#, PrimeQ]&)], {n, 0, 80}] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 03 2019 *)
PROG
(PARI) a(n) = {nb = 0; forpart(p=n, if (#p && (#select(x->isprime(x), Vec(p)) == #p), nb+=1), , [4, 4]); nb; } \\ Michel Marcus, Jun 21 2015
(Magma) [0] cat [#RestrictedPartitions(n, 4, {d:d in PrimesUpTo(n)}):n in [1..100]]; // Marius A. Burtea, May 07 2019
CROSSREFS
Column k=4 of A117278.
Number of partitions of n into r primes for r = 1..10: A010051, A061358, A068307, this sequence, A259195, A259196, A259197, A259198, A259200, A259201.
Cf. A000040.
KEYWORD
nonn,easy
AUTHOR
Doug Bell, Jun 20 2015
STATUS
approved
Number of partitions of n into five primes.
+10
18
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 3, 3, 5, 4, 6, 6, 7, 6, 10, 7, 11, 9, 12, 11, 17, 11, 18, 13, 20, 14, 24, 15, 27, 18, 29, 21, 35, 19, 38, 24, 41, 26, 47, 26, 53, 30, 54, 34, 64, 33, 70, 38, 73, 41, 81, 41, 89, 45, 92, 50, 103, 47, 112, 56, 117, 61, 127, 57
OFFSET
0,14
LINKS
David A. Corneth, Table of n, a(n) for n = 0..10000 (first 5001 terms from Doug Bell)
Sean A. Irvine, Java program (github)
FORMULA
a(n) = Sum_{l=1..floor(n/5)} Sum_{k=l..floor((n-l)/4)} Sum_{j=k..floor((n-k-l)/3)} Sum_{i=j..floor((n-j-k-l)/2)} c(i) * c(j) * c(k) * c(l) * c(n-i-j-k-l), where c = A010051. - Wesley Ivan Hurt, Apr 17 2019
a(n) = [x^n y^5] Product_{k>=1} 1/(1 - y*x^prime(k)). - Ilya Gutkovskiy, Apr 18 2019
EXAMPLE
a(17) = 3 because 17 can be written as the sum of five primes in exactly three ways: 2+2+3+3+7, 2+2+3+5+5, and 3+3+3+3+5.
MATHEMATICA
Array[Count[IntegerPartitions[#, {5}], _?(AllTrue[#, PrimeQ] &)] &, 71] (* Michael De Vlieger, Apr 21 2019 *)
PROG
(PARI) a(n) = {nb = 0; forpart(p=n, if (#p && (#select(x->isprime(x), Vec(p)) == #p), nb+=1), , [5, 5]); nb; } \\ Michel Marcus, Jun 21 2015
(Magma) [0] cat [#RestrictedPartitions(n, 5, {p:p in PrimesUpTo(n)}):n in [1..70]]; // Marius A. Burtea, May 09 2019
CROSSREFS
Column k=5 of A117278.
Number of partitions of n into r primes for r = 1..10: A010051, A061358, A068307, A259194, this sequence, A259196, A259197, A259198, A259200, A259201.
Cf. A000040.
KEYWORD
nonn,easy
AUTHOR
Doug Bell, Jun 20 2015
EXTENSIONS
More terms from David A. Corneth, Sep 06 2020
STATUS
approved
Number of ways to write n as an ordered sum of 6 primes.
+10
12
1, 6, 15, 26, 45, 72, 106, 150, 186, 236, 306, 366, 455, 540, 636, 782, 912, 1056, 1236, 1410, 1617, 1896, 2106, 2400, 2696, 2976, 3348, 3716, 4026, 4446, 4917, 5340, 5982, 6380, 7017, 7476, 8377, 8640, 9765, 9936, 11202, 11496, 13132, 12930, 15117, 14672, 17178, 16800, 19696
OFFSET
12,2
LINKS
FORMULA
G.f.: (Sum_{k>=1} x^prime(k))^6.
MAPLE
b:= proc(n, k) option remember; local r, p; r, p:= 0, 2;
if n=0 then `if`(k=0, 1, 0) elif k<1 then 0 else
while p<=n do r:= r+b(n-p, k-1); p:= nextprime(p) od; r fi
end:
a:= n-> b(n, 6):
seq(a(n), n=12..60); # Alois P. Heinz, Jan 31 2021
MATHEMATICA
nmax = 60; CoefficientList[Series[Sum[x^Prime[k], {k, 1, nmax}]^6, {x, 0, nmax}], x] // Drop[#, 12] &
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 31 2021
STATUS
approved
Number of partitions of n into 6 primes (counting 1 as a prime).
+10
11
1, 1, 2, 2, 4, 4, 7, 6, 9, 8, 12, 10, 16, 12, 19, 15, 24, 18, 29, 21, 35, 25, 41, 29, 49, 33, 56, 37, 63, 41, 72, 46, 82, 51, 91, 58, 105, 63, 115, 68, 128, 77, 143, 83, 158, 90, 174, 101, 193, 107, 211, 116, 231, 128, 250, 134, 273, 142, 294, 157, 321, 165, 347, 176, 374
OFFSET
6,3
MAPLE
b:= proc(n, i) option remember; series(`if`(n=0, 1,
`if`(i<0, 0, (p-> `if`(p>n, 0, x*b(n-p, i)))(
`if`(i=0, 1, ithprime(i)))+b(n, i-1))), x, 7)
end:
a:= n-> coeff(b(n, numtheory[pi](n)), x, 6):
seq(a(n), n=6..70); # Alois P. Heinz, Feb 24 2021
MATHEMATICA
b[n_, i_] := b[n, i] = Series[If[n == 0, 1,
If[i < 0, 0, Function[p, If[p > n, 0, x*b[n - p, i]]][
If[i == 0, 1, Prime[i]]] + b[n, i - 1]]], {x, 0, 7}];
a[n_] := Coefficient[b[n, PrimePi[n]], x, 6];
Table[a[n], {n, 6, 70}] (* Jean-François Alcover, Feb 15 2022, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 24 2021
STATUS
approved
Number of partitions of n into 6 nonprime parts.
+10
10
1, 0, 0, 1, 0, 1, 1, 1, 2, 2, 2, 3, 3, 4, 6, 6, 7, 9, 10, 12, 15, 16, 20, 23, 27, 30, 36, 40, 48, 53, 62, 68, 81, 87, 105, 112, 130, 141, 166, 176, 208, 219, 256, 271, 314, 331, 385, 403, 468, 488, 561, 588, 674, 702, 804, 837, 952, 991, 1126, 1168, 1321, 1372
OFFSET
6,9
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(isprime(i), 0, b(n-i, min(n-i, i), t-1))))
end:
a:= n-> b(n$2, 6):
seq(a(n), n=6..67); # Alois P. Heinz, Feb 12 2021
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0,
If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
If[PrimeQ[i], 0, b[n - i, Min[n - i, i], t - 1], 0]]];
a[n_] := b[n, n, 6];
Table[a[n], {n, 6, 67}] (* Jean-François Alcover, Feb 23 2022, after Alois P. Heinz *)
Table[Count[IntegerPartitions[n, {6}], _?(NoneTrue[#, PrimeQ]&)], {n, 6, 70}] (* Harvey P. Dale, Feb 21 2023 *)
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 12 2021
STATUS
approved

Search completed in 0.013 seconds