OFFSET
0,3
COMMENTS
a(n) = length of n-th row in A212721. - Reinhard Zumkeller, Jun 14 2012
Number of partitions of n into noncomposite parts. - Omar E. Pol, Jun 23 2022
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (terms n = 1..1000 from T. D. Noe)
FORMULA
G.f.: (1/(1-x))*(1/Product_{k>0} (1-x^prime(k))). a(n) = (1/n)*Sum_{k=1..n} A074372(k)*a(n-k). Partial sums of A000607. - Vladeta Jovovic, Sep 19 2002
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, (p->
`if`(i<0, 0, b(n, i-1)+ `if`(p>n, 0,
b(n-p, i))))(`if`(i<1, 1, ithprime(i))))
end:
a:= n-> b(n, numtheory[pi](n)):
seq(a(n), n=0..100); # Alois P. Heinz, Feb 15 2013
MATHEMATICA
Table[ Length[ Union[ Apply[ Times, Partitions[ n], 1]]], {n, 30}]
CoefficientList[ Series[ (1/(1 - x)) Product[1/(1 - x^Prime[i]), {i, 100}], {x, 0, 50}], x] (* Robert G. Wilson v, Aug 17 2013 *)
b[n_, i_] := b[n, i] = Module[{p}, p = If[i<1, 1, Prime[i]]; If[n == 0, 1, If[i<0, 0, b[n, i-1] + If[p>n, 0, b[n-p, i]]]]]; a[n_] := b[n, PrimePi[n] ]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Nov 05 2015, after Alois P. Heinz *)
PROG
(Haskell)
a034891 = length . a212721_row -- Reinhard Zumkeller, Jun 14 2012
(Sage) [Partitions(n, parts_in=(prime_range(n+1)+[1])).cardinality() for n in xsrange(1000)] # Giuseppe Coppoletta, Jul 11 2016
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic
a(0)=1 from Michael Somos, Feb 05 2011
STATUS
approved