[go: up one dir, main page]

login
Search: a247391 -id:a247391
     Sort: relevance | references | number | modified | created      Format: long | short | data
Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123.....12)*
+10
1
27, 25, 13, 24, 19, 24, 25, 13, 23, 24, 13, 12, 37, 25, 13, 24, 25, 24, 25
OFFSET
2,1
LINKS
Klaus Sutner and Sam Tetruashvili, Inferring automatic sequences (see table on the p. 5).
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Vincenzo Librandi, Sep 19 2014
STATUS
approved
Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123...20)*
+10
1
83, 80, 41, 21, 27, 80, 81, 40, 31, 40, 81, 80, 55, 41, 21, 80, 99, 40, 21
OFFSET
2,1
LINKS
Klaus Sutner and Sam Tetruashvili, Inferring automatic sequences (see table on the p. 5).
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Vincenzo Librandi, Sep 20 2014
STATUS
approved
Array read by antidiagonals: A(n,k) (n,k >= 2) is the base-n state complexity of the partitioned finite deterministic automaton (PFDA) for the periodic sequence (123..k)*.
+10
1
3, 6, 2, 7, 4, 3, 20, 8, 3, 2, 13, 20, 5, 6, 3, 21, 7, 10, 4, 4, 2, 15, 42, 7, 6, 9, 3, 3, 54, 16, 21, 12, 5, 8, 6, 2, 41, 13, 13, 42, 7, 20, 5, 4, 3, 110, 40, 27, 16, 14, 6, 20, 4, 3, 2, 27, 55, 21, 54, 23, 8, 13, 10, 9, 6, 3, 156, 25, 55, 11
OFFSET
1,1
COMMENTS
Rows are ultimately periodic.
LINKS
Klaus Sutner and Sam Tetruashvili, Inferring Automatic Sequences.
FORMULA
A(n,n^k) = Sum_{i=0..k} n^i.
A(n+1,n) = n.
It also appears that A(n-1,n) = 2n.
EXAMPLE
Array begins:
3 2 3 2 3
6 4 3 6 4
7 8 5 4 9 ...
20 20 10 6 5
13 7 7 12 7
...
CROSSREFS
Columns: A217519-A217521 (n = 2-4), A247566-A247581 (n = 5-20).
Rows: A217515-A217518 (k = 3-6), A247387-A247391 (k = 7-11), A247434-A247442 (k = 12-20).
KEYWORD
nonn,tabl
AUTHOR
Charlie Neder, Mar 02 2019
STATUS
approved
Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123....13)*
+10
0
156, 39, 78, 52, 156, 156, 52, 39, 78, 156, 26, 14, 13, 156, 39, 78, 52, 156, 156, 52, 39, 78, 156, 26, 14, 13, 156, 39, 78, 52, 156, 156, 52, 39, 78, 156, 26, 14, 13, 156, 39, 78, 52, 156, 156, 52, 39, 78, 156, 26, 14, 13, 156, 39, 78, 52, 156, 156, 52, 39
OFFSET
2,1
LINKS
Klaus Sutner and Sam Tetruashvili, Inferring automatic sequences (see table on the p. 5).
FORMULA
G.f.: x^2*(156 + 39*x + 78*x^2 + 52*x^3 + 156*x^4 + 156*x^5 + 52*x^6 + 39*x^7 + 78*x^8 + 156*x^9 + 26*x^10 + 14*x^11 + 13*x^12)/(1 - x^13).
MATHEMATICA
CoefficientList[Series[(156 + 39 x + 78 x^2 + 52 x^3 + 156 x^4 + 156 x^5 + 52 x^6 + 39 x^7 + 78 x^8 + 156 x^9 + 26 x^10 + 14 x^11 + 13 x^12)/(1 - x^13), {x, 0, 60}], x]
PadRight[{}, 120, {156, 39, 78, 52, 156, 156, 52, 39, 78, 156, 26, 14, 13}] (* Harvey P. Dale, Mar 19 2021 *)
PROG
(Magma) &cat[[156, 39, 78, 52, 156, 156, 52, 39, 78, 156, 26, 14, 13]: n in [0..10]];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Sep 19 2014
STATUS
approved
Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123...14)*
+10
0
43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14, 43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14, 43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14, 43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14, 43, 84, 43, 84, 29, 15, 15, 42
OFFSET
2,1
COMMENTS
Period 14, repeat [43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14].
LINKS
Klaus Sutner and Sam Tetruashvili, Inferring automatic sequences (see table on the p. 5).
Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,1).
FORMULA
G.f.: -x^2*(43+84*x+43*x^2+84*x^3+29*x^4+15*x^5+15*x^6+42*x^7+85*x^8+42*x^9+85
*x^10+28*x^11+15*x^12+14*x^13) / ( (x-1)*(1+x^6+x^5+x^4+x^3+x^2+x)*(1+x)*(1-x+
x^2-x^3+x^4-x^5+x^6) ).
MATHEMATICA
CoefficientList[Series[(43 + 84 x + 43 x^2 + 84 x^3 + 29 x^4 + 15 x^5 + 15 x^6 + 42 x^7 + 85 x^8 + 42 x^9 + 85 x^10 + 28 x^11 + 15 x^12 + 14 x^13)/(1 - x^14), {x, 0, 60}], x]
PROG
(Magma) &cat[[43, 84, 43, 84, 29, 15, 15, 42, 85, 42, 85, 28, 15, 14]: n in [0..10]];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Sep 19 2014
STATUS
approved
Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123...15)*
+10
0
60, 61, 30, 31, 16, 60, 60, 31, 16, 30, 61, 60, 30, 16, 15, 60, 61, 30, 31
OFFSET
2,1
LINKS
Klaus Sutner and Sam Tetruashvili, Inferring automatic sequences (see table on the p. 5).
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Vincenzo Librandi, Sep 20 2014
STATUS
approved
Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123...16)*
+10
0
31, 64, 21, 64, 55, 32, 25, 32, 59, 64, 29, 64, 63, 32, 17, 16, 65, 64, 33
OFFSET
2,1
LINKS
Klaus Sutner and Sam Tetruashvili, Inferring automatic sequences (see table on the p. 5).
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Vincenzo Librandi, Sep 20 2014
STATUS
approved
Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123...17)*
+10
0
136, 272, 68, 272, 272, 272, 136, 136, 272, 272, 272, 68, 272, 136, 34, 18, 17, 136, 272
OFFSET
2,1
LINKS
Klaus Sutner and Sam Tetruashvili, Inferring automatic sequences (see table on the p. 5).
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Vincenzo Librandi, Sep 20 2014
STATUS
approved
Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123...18)*
+10
0
109, 22, 55, 108, 25, 54, 37, 19, 19, 108, 31, 54, 109, 34, 55, 36, 19, 18, 109
OFFSET
2,1
LINKS
Klaus Sutner and Sam Tetruashvili, Inferring automatic sequences (see table on the p. 5).
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Vincenzo Librandi, Sep 20 2014
STATUS
approved
Base-n state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123...19)*
+10
0
342, 342, 171, 171, 171, 57, 114, 171, 342, 57, 114, 342, 342, 342, 171, 171, 38, 20, 19
OFFSET
2,1
LINKS
Klaus Sutner and Sam Tetruashvili, Inferring automatic sequences (see table on the p. 5).
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Vincenzo Librandi, Sep 20 2014
STATUS
approved

Search completed in 0.009 seconds