
Inferring Automatic Sequences

Klaus Sutnera,∗, Sam Tetruashvili1

aCarnegie Mellon University, Pittsburgh, PA 15213, USA
bGoogle, Mountain View, CA 94043, USA

Abstract

We give tight upper and lower bounds on the number of terms of an automatic sequence needed to

construct the corresponding minimal generating automaton.

Keywords: Automatic sequences, state complexity, machine learning

1. Motivation

Given a sequence of integers, it is a standard problem to try to determine a general and simple

description for the whole infinite sequence when only a finite initial segment is available. For ex-

ample, the computer algebra system Mathematica [17] offers operations FindLinearRecurrence and

FindGeneratingFunction that attempt to express the given initial segment as a linear recurrence or

to compute a generating function for the sequence. An excellent web-based resource for the identifi-

cation of integer sequences is Sloane’s Online Encyclopedia of Integer Sequences (OEIS), [13]. In this

paper we study the subproblem of inferring automatic sequences, sequences that can be described

by finite state machines. Classical examples of automatic sequences include the Prouhet-Thue-Morse

sequence and the Rudin-Shapiro sequence, see [2, 3].

Since the range of these sequences is necessarily bounded, it is convenient to think of them as

infinite words. Thus, an automatic word is an infinite word A ∈ ∆ω over some finite alphabet ∆ that

can be generated by a finite state machine in the sense that the machine on input n will output A(n).

The input alphabet of the machine will be a digit alphabet of the form Σk = {0, 1, . . . , k − 1} and

the number n will be represented in reverse base k notation. As is shown in [2], we could equally

well choose ordinary base k; however, our convention is more appropriate since it allows for the direct

computation of candidate machines using decimations and kernels, see section 2.3.

Of course, to formally establish automaticity of an infinite word A we need a general description

of A, say, a simple program that computes A(n) given n. As is pointed out in [4], “in practice

the following procedure often succeeds in deducing” the more general property of k-regularity “from

∗Corresponding author
Email addresses: sutner@cs.cmu.edu (Klaus Sutner), tetruashvili.sam@gmail.com (Sam Tetruashvili)

Preprint submitted to Elsevier November 6, 2012

knowledge of the first few values.” As we shall see, the number of terms required to infer even a

k-automatic word whose minimal generating finite state machine has state complexity m may be as

large as k2m−2; see also [16] and [12] for similar results. In general, the number of terms required for

proper inference is exponential in two natural parameters associated with the minimal recognizer, its

depth and discriminating length, see section 2.3 below. We have applied our algorithm to Sloane’s

OIES, apparently with fairly good accuracy.

2. Kernels and State Complexity

As already pointed out, our default numeration system is reverse base k, in symbols rrepk(n) =

drdr−1 . . . d0 where n =
∑

i≤r diB
r−i and dr 6= 0. Let us fix the empty word as the representation for

zero but note that we allow trailing zeros. Correspondingly, we write rvalk(w) for the numerical value

of w. To determine A(n) given rrepk(n) we consider a slight generalization of ordinary DFAs whose

states are labeled by letters in ∆. See [11] for general background.

Definition 2.1 A partitioned deterministic finite automaton (PDFA) is an automaton of the form

M = 〈Q,Σ, δ; q0,F 〉 where 〈Q,Σ, δ 〉 is a deterministic and complete transition system, q0 ∈ Q an

initial state and F = (Fa

∣∣ a ∈ ∆) is a partition of Q. The cardinality of ∆ is the order of M .

We are here mostly interested in the case Σ = Σk. It will be convenient to think of the index set ∆

of F as an alphabet. This is clearly equivalent to the DFAOs used in [2], but coexists more readily

with standard minimization algorithms based on refining given partitions of the state set. For a ∈ ∆

the a-behavior of a state p in M as [[p]]a = { x ∈ Σ⋆ | δ(p, x) ∈ Fa }. The behavior of p is the vector

([[p]]a
∣∣ a ∈ ∆). Slightly abusing terminology, we define the language of M as L(M) = [[q0]] ⊆ (Σ⋆)|∆|.

The automaton is reduced if its states all have distinct behavior. It is easy to see that for every

PDFA there is an equivalent one that is accessible and reduced. Moreover, this PDFA is unique up

to isomorphism. We will refer to this automaton as the minimal PDFA.

Definition 2.2 An infinite word A over alphabet ∆ is k-automatic if there exists a PDFA M over

alphabets Σk and ∆ such that for all w ∈ Σ⋆
k: δ(q0, w) ∈ FA(rvalk(w)).

We will say that M generates A to distinguish this situation from other forms of acceptance of

infinite words. Thus, our machines operate on reverse base k representations. This is somewhat

arbitrary but will be convenient later in our discussion of kernels. Our definition allows for trailing

zeros; it is shown in [2] that this definition is quite robust: one may also exclude trailing zeros or one

may use standard base k representation instead without changing the class of automatic words.

2.1. Decimation and Kernels

Let A ∈ ∆ω be an infinite word and α a finite prefix of A, in symbols α ⊏ A. In order to test

whether α can plausibly be considered as the prefix of a k-automatic sequence we have to attempt

2

to construct a machine that generates at least α. The construction ought to succeed and return the

minimal PDFA for A whenever A is indeed k-automatic and the prefix α ⊏ A is sufficiently long. When

A fails to be k-automatic the algorithm should indicate that this is likely to be the case. Likewise,

when α is too short the algorithm should provide appropriate feedback. In this section we describe

an algorithm that has these properties and establish precise bounds for the length of α required to

properly identify A.

Since any brute-force enumeration of candidate machines appears to be computationally infeasible,

we construct instead a machine directly from the given prefix α. To this end we use the characterization

of automaticity based on decimations and kernels.

Definition 2.3 Let A : N → Γ be an infinite word. Given a stride s ≥ 1 and an offset d ≥ 0 we can

define the decimation of A with respect to s and d by A[s, d](i) = A(s · i+ d).

For example, for the well-known Prouhet-Thue-Morse word T [3] we have T [2, 0] = T but T ′ =

T [2, 1] 6= T . Moreover, T ′[2, 0] = T ′ and T ′[2, 1] = T .

Proposition 2.1 The operation ∗ defined by [s, d] ∗ [s′, d′] = [ss′, sd′+ d] induces a monoid structure

on N
+ × N with neutral element [1, 0], a semidirect product of the multiplicative monoid on N

+ and

the additive monoid on N. We refer to this monoid as the decimation monoid.

Proposition 2.2 The decimation monoid naturally acts on the right on Γω.

We are interested in the case where the stride s is a power of the base k ≥ 2. Clearly, the

corresponding submonoid is generated by the elements [k, i] where 0 ≤ i < k. Also note that for

any 0 ≤ n < ki we have A(n) = fst(A[ki, n]) where fst extracts the first letter of an infinite word.

Thus, we can recover the letters of the word from the first letters of the various decimations. This is

particularly interesting when the total number of these decimations is finite.

Definition 2.4 The k-kernel of a word A ∈ Γω is defined by Kerk(U) = {A[ki, j] | 0 ≤ i, 0 ≤ j < ki }

For example, the 2-kernel of the PMT word T consists of T and T [2, 1]. Consider a PDFA M

generating a k-automatic sequence A. For the sake of this argument, let us interpret the behavior [[p]]

of a state p in M to be the word generated with p as the initial state. Then we have [[δ(p, d)]] = [[p]][k, d].

To see this, recall that M is working on LSD-first representations of numbers. Correspondingly, we

can define a right action of Σ⋆
k on Γω by U [w] = U [k|w|, rvalk(w)]. Thus [[δ(q0, w)]] = A[w] by induction

on w. Hence the states in M correspond to the decimations of A with strides ki.

The following theorem expresses automaticity in terms of kernels [9]. We briefly restate the proof

in a form suitable for our purposes.

Theorem 2.1 (Eilenberg) A sequence is k-automatic if, and only if, its k-kernel is finite.

3

Proof. First assume A is k-automatic via a PDFA M on m states. Choose a transfer sequence

xp for every state p in M . As we have seen, every kernel element B is of the form B = A[w] for some

word w. But then B = A[xδ(q0,w)] and the kernel has cardinality at most m.

For the opposite direction consider the finite kernel K of A. Define a PDFA M by 〈K,Σk, δ, A,F 〉

where δ(B, a) = B[a] and Fa = {B | fst(B) = a }. It is easy to see that M has the right properties. �

The size of the minimal PDFA generating an automatic word is a natural measure of its complexity.

Write µk(A) for the number of states of the minimal PDFA generating A in reverse base k. By

Cobham’s celebrated theorem [7], any infinite word A that fails to be ultimately periodic cannot be

both k-automatic and ℓ-automatic unless k and ℓ are multiplicatively dependent, i.e., unless ki = ℓj for

some i, j > 0. Let us refer to automatic words that fail to be ultimately periodic as proper automatic.

Call k ≥ 2 multiplicatively primitive if k is the least element in its class of multiplicatively de-

pendent numbers. Equivalently, the prime exponents in the factorization of k must have greatest

common divisor 1. It is well-known that a word is automatic with respect to base k if, and only if, it

is automatic with respect to base ki.

Proposition 2.3 µk(A) ≥ µki(A) for all i ≥ 1.

To see this, note that we can identify the minimal PDFA for A in base ki with a subautomaton

of the minimal PDFA for base k: consider only states reachable from the initial state under inputs

of length a multiple of i. Alas, our measure only accounts for the number of states; the number of

transitions may well stay constant even if the number of states decreases in the step from k to ki. At

any rate, for a proper automatic word we can then define the state complexity of A as µk(A) where

k is the uniquely determined multiplicatively primitive base for which A is k-automatic.

On the other hand, when A is ultimately periodic it is k-automatic for any base k.

Claim 2.1 Let Am = (12 . . .m)ω be the canonical m-periodic word. Then we have:

• µm(Am) = m+ 1 and µm+1(Am) = m,

• µk(Am) = m |S|+ b for k ≥ m, S the multiplicative subsemigroup of Zm generated by k mod m
and b = 0 when m and k are coprime and 1 otherwise.

Proof. The first claim is immediate from our definitions.

For the second claim note that we can construct a finite state machine M that generates Am by

forming the closure Q ⊆ Zm × S of (0, 1) under the maps (p, s)
a

−→ (p + a · s, s · k) mod m. where

0 ≤ a < k. Since k ≥ m, it is easy to see that in fact Q = Zm × S. The correction factor b is required

since 1 /∈ S when m and k fail to be coprime. The partition is determined by the first components of

the states and it is easy to see that M is reduced. �

As a consequence, the sequence (µk(Am))k is ultimately periodic with period m. Note that the

condition k ≥ m is necessary in general, see table 1 which lists µk(Ap) for 2 ≤ k,m ≤ 20.

4

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3
3 6 4 3 6 4 3 6 4 3 6 4 3 6 4 3 6 4 3 6
4 7 8 5 4 9 8 5 4 9 8 5 4 9 8 5 4 9 8 5
5 20 20 10 6 5 20 20 10 6 5 20 20 10 6 5 20 20 10 6
6 13 7 7 12 7 6 13 7 7 12 7 6 13 7 7 12 7 6 13
7 21 42 21 42 14 8 7 21 42 21 42 14 8 7 21 42 21 42 14
8 15 16 13 16 23 16 9 8 25 16 17 16 25 16 9 8 25 16 17
9 54 13 27 54 16 27 18 10 9 54 19 27 54 19 27 18 10 9 54
10 41 40 21 11 11 40 41 20 11 10 41 40 21 11 11 40 41 20 11
11 110 55 55 55 110 110 110 55 22 12 11 110 55 55 55 110 110 110 55
12 27 25 13 24 19 24 25 13 23 24 13 12 37 25 13 24 25 24 25
13 156 39 78 52 156 156 52 39 78 156 26 14 13 156 39 78 52 156 156
14 43 84 43 84 29 15 15 42 85 42 85 28 15 14 43 84 43 84 29
15 60 61 30 31 16 60 60 31 16 30 61 60 30 16 15 60 61 30 31
16 31 64 21 64 55 32 25 32 59 64 29 64 63 32 17 16 65 64 33
17 136 272 68 272 272 272 136 136 272 272 272 68 272 136 34 18 17 136 272
18 109 22 55 108 25 54 37 19 19 108 31 54 109 34 55 36 19 18 109
19 342 342 171 171 171 57 114 171 342 57 114 342 342 342 171 171 38 20 19
20 83 80 41 21 27 80 81 40 31 40 81 80 55 41 21 80 99 40 21

Table 1: The state complexity of minimal PDFAs for periodic sequences up to period and base 20.

The minimal PDFA for a general m-periodic word is a quotient of the minimal PDFA for Am, so

the values provide upper bounds. Note, though, that the exact values for m-periodic words Bm =

(00 . . . 01)ω is quite complicated, see [1] for ordinary base k and [14] fore reverse base k.

2.2. Co-Complexity

Recall that we use reverse base k as the default representation. Needless to say, there is also a

minimal PDFA M rev that generates A using standard base k. We refer to the number of states of

M rev as the state co-complexity of A.

Suppose M is an accessible PDFA. We will show how to construct the minimal PDFA M rev for the

(component-wise) reversal of L(M). Recall Brzozowski’s [5] result that automata can be minimized

by applying reversal and determinization twice. In our case, M rev is isomorphic to det(rev(M))

where det denotes determinization using the standard Rabin-Scott algorithm (accessible part only)

and rev denotes reversal. We can generalize this construction to PDFAs as follows. Write M =

〈Q,Σ,∆, δ; q0,F 〉 for the original PDFAs and set

Ma = 〈Q,Σ, δ; q0, Fa 〉 for x ∈ ∆

M ′
a = det(rev(Ma))

M ′ =
⊕

a∈∆

M ′
a

5

Attach a partition to M ′ by setting F ′
a = {P | q0 ∈ Pa }

Theorem 2.2 The PDFA M ′ is minimal and isomorphic to M rev.

Proof. First note that by construction L(M ′) = L(M)rev. A simple induction shows that each

state P = δ′(F , x) of M ′ forms a partition of Q, so suppose that P 6= R, say, Pa 6= Ra.

We may safely assume that p ∈ Pa −Ra. But M is accessible, so δ(q0, x) = p for some word x. It

follows that xrev lies in the a-behavior of P but not of R. Hence M ′ is both accessible and reduced.

�

It follows that complexity and co-complexity are exponentially related. Alas, there may indeed be

an exponential gap between the two measures: As an example, consider the binary word Ar defined

by the language Lr = 0⋆12⋆12r10⋆ in the sense that Ar(n) = 1 iff rrep3(n) ∈ Lr. Then the state

complexity of Ar is 2r+2 + 1, but the co-complexity is r + 3.

2.3. The Kernel Algorithm

Suppose we are given a k-automatic word A. How can we compute its state complexity and the

corresponding minimal PDFA? For the time being, let us suppose we can directly manipulate infinite

words. In particular we need to be able to compute decimations A[ki, j] and check them for equality.

Then we can compute the kernel of A and actually the minimal PDFA using the standard closure

algorithm: close {A} under the operations X 7→ X [k, j], 0 ≤ j < k.

1 // kernel algorithm
2

3 K = {A};
4 set A active;
5 while(some active B remains)
6 deactivate B;
7 foreach j < k do
8 X = B[k,j];
9 if(X notin K)
10 add X to K;
11 set X active;
12 else
13 add (B,j,Y) to transitions;

Note that there are only two non-logical operations in the algorithm:

• decimation (to compute X from B in line 8),

• equality testing (to check if X is in K in line 9)

Decimation naturally extends to an operation over finite words. However, the length of the prefix

shrinks roughly by a factor of k at each step. To test equality we compare prefixes: x =p y if x ⊑ y

6

or y ⊑ x. Thus, the shorter word has to be a prefix of the longer. Note that α, β ⊏ A implies α =p β.

For α ⊏ A we have α[w] ⊏ A[w], but it may well happen that α[w] =p α[v] when in fact A[w] 6= A[v].

Running the kernel algorithm with these modified non-logical operations will thus in general produce

an under-approximation, we may obtain false identities.

We now determine the required number of terms of A to ensure success of the kernel algorithm.

Theorem 2.3 Let A be k-automatic with state complexity m. The prefix of length k2m−3 of A
suffices to determine the state complexity, and the prefix of length k2m−2 suffices to determine the

minimal PDFA. Moreover, both bounds are tight.

Proof. Suppose the k-kernel of A is K = {A = A1, . . . , Am}. There are witnesses vi ∈ Σ⋆
k of

length at most m− 1 such that Ai = A[vi]. Moreover, for i 6= j there are discriminating words wi,j of

length at most m− 2 such that fst(Ai[wi,j]) 6= fst(Aj [wi,j]). It follows that the kernel algorithm from

above will produce the correct number of kernel elements given a prefix of length k2m−3. To obtain

the whole PDFA we need the first k2m−2 letters.

To see that the bounds are tight consider the regular languages

L1 = { x ∈ 2⋆ | #1x = r (mod r + 1) }

L2 = { x ∈ 2⋆ | #1x = r (mod r + 2) }

L3 = { x ∈ 2⋆ | #1x = r }

and write A1, A2 and A3 for the corresponding binary words. A1 has state complexity r + 1 and A2

has state complexity r + 2 but they agree on their first 22m−3 − 1 bits. Words A2 and A3 both have

kernels of size m = r + 2 but distinct PDFAs, yet they agree on their first 22m−2 − 1 bits. �

It is interesting to study the lower bound examples in the last theorem more carefully. For r = 5,

the kernel algorithm applied to the first 211 bits of A2 produces the machine in figure 1. The machine

is correct except that the transition labeled 0 with source state 7 should be a self-loop.

In general the two critical parameters that determine the number of terms required in the inference

algorithm are the following. First, the depth of the minimal PDFA, i.e., the length of the longest path

from the initial state to an arbitrary state. Second, the length of the longest discriminating string

that differentiates the between the behavior of two distinct states.

As an example, consider the square-free bi-infinite ternary sequence introduced by Kurosaki in

[10]. The bi-infinite sequence is obtained by iterating the map ϕ(x) = xx x̂ where x is defined by the

substitution x[0 7→ 1, 1 7→ 0] and x̂ by x[0 7→ 2, 2 7→ 0]. From this we can derive a morphism f and a

substitution g as follows:

f : (1 → 123, 2 → 214, 3 → 541, 4 → 632, 5 → 365, 6 → 456)

g : (1 → 0, 2 → 1, 3 → 2, 4 → 2, 5 → 1, 6 → 0)

7

0

10

1

0

1

0

1

0

1

0

1

01

1

2

3

4 5

6

7

Figure 1: The machine produced by the kernel algorithm on input the first 211 bits of A2.

Then g(lim fn(1)) is a square-free infinite word K that starts like so:

01210212010201202120102101210201202101210212021012010212021020

The morphism and substitution together determine a PDFA that generates K in ordinary base 3

notation and to co-complexity of K turns out to be 6. The state complexity of K is also 6 and the

PDFA constructed by the algorithm from the prefix of length 81 is shown in figure 2.

The inference algorithm uses the kernel algorithm, possibly repeatedly, to ascertain automaticity

of a given finite sequence α.

0

1

2 0

12

0

1

2

01

2

0

1201

2

0 0

1

2

12

Figure 2: The minimal PDFA for the Kurosaki word. State labels represent the partition.

8

3. Inferring Automaticity

We have used our algorithm to test the sequences of the Online Encyclopedia of Integer Sequences

[13]. Note that there is no easy way to determine whether a sequence in OEIS is infinite or finite, so

we use heuristics to weed out sequences that are too short. We also omit sequences that would require

large alphabets and may be assumed to have infinite range. The remaining sequences are recoded as

words over a suitable digit alphabet ∆d. Next we try to determine whether A is ultimately periodic

by checking whether all sufficiently long prefixes of A end in a cube, a condition that is known to

imply ultimate periodicity in the infinite case, see [6].

In the interesting case when A is not found to be ultimately periodic the algorithm picks a proper

prefix α ⊏ A and attempts to compute the k-kernel of α for various small multiplicatively primitive

values of k. The computation is deemed successful when the automaton based on α properly generates

all of A. In the experiment, we used our algorithm as part of a larger package that attempts to infer

integer sequences, see [15]. As of April 30, 2010, the database contained 175117 integer sequences.

Of these, the package inferred a total of 33157 with high confidence and identified 1828 sequences as

automatic.

Acknowledgments: We are grateful to Jeff Shallit for provinding references [12] and [16], and

to Neil Sloane for discovering errors in an earlier version of table 1.

References

[1] B. Alexeev. Minimal DFA for testing divisibility. J. Comput. System Sci., 69(2):235–243, 2004.

[2] J.-P. Allouche and J. Shallit. Automatic Sequences. Cambridge UP, 2003.

[3] J.-P. Allouche and J. O. Shallit. The ubiquitous Prouhet-Thue-Morse sequence. In Ding et al.

[8], pages 1–16.

[4] J.-P. Allouche and J. O. Shallit. The ring of k-regular sequences, II. Theoretical Computer

Science, 307(1):3–29, 2003. WORDS.

[5] J. A. Brzozowski. Canonical regular expressions and minimal state graphs for definite events. In

Mathematical Theory of Automata, volume 12 of MRI Symposia Series, pages 529–561. Polytech-

nic Press, Polytechnic Institute Brooklyn, 1963.

[6] C. Choffrut and J. Karhumäki. Combinatorics of words. In G. Rozenberg and A. Salomaa,

editors, Handbook of Formal Languages, volume 1, chapter 6. Springer Verlag, 1997.

[7] A. Cobham. On the base-dependence of sets of numbers recognizable by finite automata. Math.

Systems Theory, 6:186–192, 1972.

9

[8] C. Ding, T. Helleseth, and H. Niederreiter, editors. Sequences and Their Applications. Springer,

Berlin, 1999.

[9] S. Eilenberg. Automata, Languages and Machines, volume A. Academic Press, 1974.

[10] T. Kurosaki. Direct definition of a ternary infinite square-free sequence. Information Processing

Letters, 106:175–179, 2008.

[11] J. Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.

[12] J. Shallit. Remarks on inferring integer sequences. https://cs.uwaterloo.ca/~shallit/

Talks/infer.ps, 1995.

[13] N. J. A. Sloane. Online encyclopedia of integer sequences. http://www.research.att.com/

~njas/sequences/.

[14] K. Sutner. Divisibility and state-complexity. The Mathematica Journal, 11(3):430–445, 2009.

[15] S. Tetruashvili. Inductive inference of integer sequences. Sen. Thesis, Carnegie Mellon U., Advisor:

M. Blum, Mai 2010.

[16] L. P. J. Veelenturf. Inference of sequential machines from sample computations. IEEE Trans.

Computers, 27:167–170, 1978.

[17] S. Wolfram. Mathematica. http://www.wolfram.com/.

10

