[go: up one dir, main page]

login
Search: a244417 -id:a244417
     Sort: relevance | references | number | modified | created      Format: long | short | data
Lexicographically earliest such sequence a that a(i) = a(j) => A122841(i) = A122841(j) and A244417(i) = A244417(j), for all i, j,
+20
4
1, 2, 2, 3, 1, 4, 1, 5, 3, 2, 1, 6, 1, 2, 2, 7, 1, 6, 1, 3, 2, 2, 1, 8, 1, 2, 5, 3, 1, 4, 1, 9, 2, 2, 1, 10, 1, 2, 2, 5, 1, 4, 1, 3, 3, 2, 1, 11, 1, 2, 2, 3, 1, 8, 1, 5, 2, 2, 1, 6, 1, 2, 3, 12, 1, 4, 1, 3, 2, 2, 1, 13, 1, 2, 2, 3, 1, 4, 1, 7, 7, 2, 1, 6, 1, 2, 2, 5, 1, 6, 1, 3, 2, 2, 1, 14, 1, 2, 3, 3, 1, 4, 1, 5, 2
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the ordered pair [A122841(n), A244417(n)].
Essentially also the restricted growth sequence transform of the unordered pair {A007814(n), A007949(n)}.
For all i, j: a(i) = a(j) => A072078(i) = A072078(j).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A007814(n) = valuation(n, 2);
A007949(n) = valuation(n, 3);
A122841(n) = min(A007814(n), A007949(n));
A244417(n) = max(valuation(n, 2), valuation(n, 3));
v322316 = rgs_transform(vector(up_to, n, [A122841(n), A244417(n)]));
\\ The following is equivalent:
\\ v322316 = rgs_transform(vector(up_to, n, Set([A007814(n), A007949(n)])));
A322316(n) = v322316[n];
CROSSREFS
Cf. A007814, A007949, A122841, A244417, A322026, A322317 (ordinal transform).
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 04 2018
STATUS
approved
Number of powers of 6 modulo n.
+10
15
1, 2, 2, 3, 1, 2, 2, 4, 3, 2, 10, 3, 12, 3, 2, 5, 16, 3, 9, 3, 3, 11, 11, 4, 5, 13, 4, 4, 14, 2, 6, 6, 11, 17, 2, 3, 4, 10, 13, 4, 40, 3, 3, 12, 3, 12, 23, 5, 14, 6, 17, 14, 26, 4, 10, 5, 10, 15, 58, 3, 60, 7, 4, 7, 12, 11, 33, 18, 12, 3, 35, 4, 36, 5, 6, 11, 10, 13, 78, 5, 5, 41, 82, 4, 16
OFFSET
1,2
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from David W. Wilson)
FORMULA
a(n) = A007737(n) + A244417(n). - Amiram Eldar, Aug 25 2024
MATHEMATICA
a[n_] := Module[{e = IntegerExponent[n, {2, 3}]}, Max[e] + MultiplicativeOrder[6, n/Times @@ ({2, 3}^e)]]; Array[a, 100] (* Amiram Eldar, Aug 25 2024 *)
CROSSREFS
Cf. A054703 (base 2), A054704 (3), A054705 (4), A054706 (5), A054708 (7), A054709 (8), A054717 (9), A054710 (10), A351524 (11), A054712 (12), A054713 (13), A054714 (14), A054715 (15), A054716 (16).
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Apr 20 2000
STATUS
approved
Lexicographically earliest infinite sequence such that a(i) = a(j) => A007814(i) = A007814(j) and A007949(i) = A007949(j), for all i, j, where A007814 and A007949 give the 2- and 3-adic valuations of n.
+10
13
1, 2, 3, 4, 1, 5, 1, 6, 7, 2, 1, 8, 1, 2, 3, 9, 1, 10, 1, 4, 3, 2, 1, 11, 1, 2, 12, 4, 1, 5, 1, 13, 3, 2, 1, 14, 1, 2, 3, 6, 1, 5, 1, 4, 7, 2, 1, 15, 1, 2, 3, 4, 1, 16, 1, 6, 3, 2, 1, 8, 1, 2, 7, 17, 1, 5, 1, 4, 3, 2, 1, 18, 1, 2, 3, 4, 1, 5, 1, 9, 19, 2, 1, 8, 1, 2, 3, 6, 1, 10, 1, 4, 3, 2, 1, 20, 1, 2, 7, 4, 1, 5, 1, 6, 3
OFFSET
1,2
COMMENTS
Restricted growth sequence transform of the ordered pair [A007814(n), A007949(n)].
For all i, j:
A305900(i) = A305900(j) => a(i) = a(j),
a(i) = a(j) => A122841(i) = A122841(j),
a(i) = a(j) => A244417(i) = A244417(j),
a(i) = a(j) => A322316(i) = A322316(j) => A072078(i) = A072078(j).
If and only if a(k) > a(i) for all k > i then k is in A003586, - David A. Corneth, Dec 03 2018
That is, A003586 gives the positions of records (1, 2, 3, 4, 5, ...) in this sequence.
Sequence A126760 (without its initial zero) and this sequence are ordinal transforms of each other.
LINKS
Jon Maiga, Computer-generated formulas for A322026, Sequence Machine.
FORMULA
For s = A003586(n), a(s) = n = a((6k+1)*s) = a((6k-1)*s), where s is the n-th 3-smooth number and k > 0. - David A. Corneth, Dec 03 2018
A065331(n) = A003586(a(n)). - David A. Corneth, Dec 04 2018
From Antti Karttunen, Sep 08 2024: (Start)
a(n) = Sum{k=1..n} [A126760(k)==A126760(n)], where [ ] is the Iverson bracket.
a(n) = A071521(A065331(n)). [Found by Sequence Machine and also by LODA miner]
a(n) = A323884(25*n). [Conjectured by Sequence Machine]
(End)
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A007814(n) = valuation(n, 2);
A007949(n) = valuation(n, 3);
v322026 = rgs_transform(vector(up_to, n, [A007814(n), A007949(n)]));
A322026(n) = v322026[n];
(PARI)
A065331(n) = (3^valuation(n, 3)<<valuation(n, 2)); \\ From A065331
A071521(n) = { my(t=1/3); sum(k=0, logint(n, 3), t*=3; logint(n\t, 2)+1); }; \\ From A071521.
A322026(n) = A071521(A065331(n)); \\ Antti Karttunen, Sep 08 2024
CROSSREFS
Cf. A003586 (positions of records, the first occurrence of n), A007814, A007949, A065331, A071521, A072078, A087465, A122841, A126760 (ordinal transform), A322316, A323883, A323884.
Cf. also A247714 and A255975.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 03 2018
STATUS
approved
Numerator of the asymptotic mean over the positive integers of the maximum exponent in the prime factorization of the largest prime(n)-smooth divisor function.
+10
4
1, 13, 51227, 926908275845, 548123689541583443758024333411, 629375533747930240763697631488051776709110194920714685268467462860005271344878614119
OFFSET
1,2
COMMENTS
The numbers of digits of the terms are 1, 2, 5, 12, 30, 84, 215, 537, 1237, 2930, 6775, 15484, 35185, ... .
FORMULA
Let f(n) = a(n)/A375539(n). Then:
f(n) = lim_{m->oo} (1/m) * Sum_{i=1..m} A375537(n, i).
f(n) = Sum_{k>=1} k * (d(k+1, prime(n)) - d(k, prime(n))), where d(k, p) = Product_{q prime <= p} (1 - 1/q^k).
Limit_{n->oo} f(n) = A033150.
EXAMPLE
Fractions begins: 1, 13/10, 51227/36540, 926908275845/636617813832, 548123689541583443758024333411/369693143251781030056182487680, ...
For n = 1, prime(1) = 2, the "2-smooth numbers" are the powers of 2 (A000079), and the sequence that gives the exponent of the largest power of 2 that divides n is A007814, whose asymptotic mean is 1.
For n = 2, prime(2) = 3, the 3-smooth numbers are in A003586, and the sequence that gives the maximum exponent in the prime factorization of the largest 3-smooth divisor of n is A244417, whose asymptotic mean is 13/10.
MATHEMATICA
d[k_, n_] := Product[1 - 1/Prime[i]^k, {i, 1, n}]; f[n_] := Sum[k * (d[k+1, n] - d[k, n]), {k, 1, Infinity}]; Numerator[Array[f, 6]]
CROSSREFS
Cf. A033150, A375537, A375539 (denominators).
Cf. A375538 (numerators).
KEYWORD
nonn,frac
AUTHOR
Amiram Eldar, Aug 19 2024
STATUS
approved
Ordinal transform of A322316.
+10
3
1, 1, 2, 1, 2, 1, 3, 1, 2, 3, 4, 1, 5, 4, 5, 1, 6, 2, 7, 3, 6, 7, 8, 1, 9, 8, 2, 4, 10, 2, 11, 1, 9, 10, 12, 1, 13, 11, 12, 3, 14, 3, 15, 5, 6, 13, 16, 1, 17, 14, 15, 7, 18, 2, 19, 4, 16, 17, 20, 3, 21, 18, 8, 1, 22, 4, 23, 9, 19, 20, 24, 1, 25, 21, 22, 10, 26, 5, 27, 2, 3, 23, 28, 4, 29, 24, 25, 5, 30, 5, 31, 11, 26, 27, 32, 1
OFFSET
1,3
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A007814(n) = valuation(n, 2);
A007949(n) = valuation(n, 3);
A122841(n) = min(A007814(n), A007949(n));
A244417(n) = max(valuation(n, 2), valuation(n, 3));
v322316 = rgs_transform(vector(up_to, n, [A122841(n), A244417(n)]));
v322317 = ordinal_transform(v322316);
A322317(n) = v322317[n];
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 04 2018
STATUS
approved
The maximum exponent in the prime factorization of the largest 5-smooth divisor of n.
+10
3
0, 1, 1, 2, 1, 1, 0, 3, 2, 1, 0, 2, 0, 1, 1, 4, 0, 2, 0, 2, 1, 1, 0, 3, 2, 1, 3, 2, 0, 1, 0, 5, 1, 1, 1, 2, 0, 1, 1, 3, 0, 1, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 2, 0, 1, 2, 6, 1, 1, 0, 2, 1, 1, 0, 3, 0, 1, 2, 2, 0, 1, 0, 4, 4, 1, 0, 2, 1, 1, 1, 3, 0, 2, 0, 2, 1, 1, 1, 5, 0, 1, 2, 2, 0, 1, 0, 3, 1
OFFSET
1,4
FORMULA
a(n) = A051903(A355582(n)).
a(n) = max(A007814(n), A007949(n), A112765(n)).
a(n) = 0 if and only if n is a 7-rough number (A007775).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A375538(3)/A375539(3) = 51227/36540 = 1.401943076...
MATHEMATICA
a[n_] := Max[IntegerExponent[n, {2, 3, 5}]]; Array[a, 100]
PROG
(PARI) a(n) = max(max(valuation(n, 2), valuation(n, 3)), valuation(n, 5));
CROSSREFS
Cf. A007775, A051903, A244417 (3-smooth analog), A355582, A375537, A375538, A375539.
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Aug 19 2024
STATUS
approved
Square array A(n, k) (n, k >= 1) read by antidiagonals in ascending order: A(n, k) = Max_{i = 1..n} v_prime(i)(k), where v_p(k) is the p-adic valuation of k.
+10
3
0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 1, 1, 0, 0, 1, 1, 2, 1, 1, 0, 3, 0, 1, 1, 2, 1, 1, 0, 3, 0, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 2, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 2, 0, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 2, 0, 1
OFFSET
1,10
COMMENTS
For a given n, A(n, k) is the sequence that gives the maximum exponent in the prime factorization of the largest prime(n)-smooth divisor of k.
FORMULA
A(n, k) = Max_{i=1..n} A249344(i, k).
A(n, k) = A051903(k) for n >= A000720(A006530(k)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{i=1..m} A(n, i) = A375538(n)/A375539(n).
EXAMPLE
Array begins:
n | n-th row
---+-----------------------------
1 | 0, 1, 0, 2, 0, 1, 0, 3, 0, 1
2 | 0, 1, 1, 2, 0, 1, 0, 3, 2, 1
3 | 0, 1, 1, 2, 1, 1, 0, 3, 2, 1
4 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
5 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
6 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
7 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
8 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
9 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
10 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
MATHEMATICA
A[n_, k_] := Max[IntegerExponent[k, Prime[Range[n]]]]; Table[A[n - k + 1, k], {n, 1, 14}, {k, 1 n}] // Flatten
PROG
(PARI) A(n, k) = vecmax(apply(x -> valuation(k, x), primes(n)));
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Amiram Eldar, Aug 19 2024
STATUS
approved
6-adic value of 1/n for n >= 1.
+10
1
1, 6, 6, 36, 1, 6, 1, 216, 36, 6, 1, 36, 1, 6, 6, 1296, 1, 36, 1, 36, 6, 6, 1, 216, 1, 6, 216, 36, 1, 6, 1, 7776, 6, 6, 1, 36, 1, 6, 6, 216, 1, 6, 1, 36, 36, 6, 1, 1296, 1, 6, 6, 36, 1, 216, 1, 216, 6, 6, 1, 36, 1, 6, 36, 46656, 1, 6, 1, 36, 6, 6, 1, 216, 1, 6, 6, 36, 1, 6, 1, 1296, 1296, 6, 1, 36, 1, 6
OFFSET
1,2
COMMENTS
For the definition of 'g-adic value of x', called |x|_g with g an integer >= 2, see the Mahler reference, p. 7. Sometimes also called g-adic absolute value of x. If g is not a prime then this is called a non-archimeden pseudo-valuation. See Mahler, p. 10.
REFERENCES
Kurt Mahler, p-adic numbers and their functions, second ed., Cambridge University Press, 1981.
FORMULA
a(n) = 1 if n == 1 or 5 (mod 6). a(n) = 6^max(A007814(n), A007949(n)) if n == 0 (mod 6), a(n) = 6^A007814(n) if n == 2 or 4 (mod 6), a(n) = 6^A007949(n) if n == 3 (mod 6). The exponents, called f(1/n) in the Mahler reference, are given in A244417(n).
a(n) = 6^A244417(n). - Amiram Eldar, Aug 19 2024
EXAMPLE
a(6) = 6^max(1,1) = 6^1 = 6. a(12) = 6^max(2,1) = 6^2 = 36,
a(18) = 6^max(1,2) = 36, a(24) = 6^max(3,1) = 6^3 = 216, ...
a(2) = 6^1 = 6, a(8) = 6^3 = 216, a(14) = 6^1 = 6, ...
a(3) = 6^1 = 6, a(9) = 6^2 = 36, a(15) = 6^1 = 6, ...
a(4) = 6^2 = 36, a(10) = 6^1 = 6, a(16) = 6^4 = 1296, ...
MATHEMATICA
a[n_] := 6^Max[IntegerExponent[n, {2, 3}]]; Array[a, 100] (* Amiram Eldar, Aug 19 2024 *)
PROG
(PARI) a(n) = 6^max(valuation(n, 2), valuation(n, 3)); \\ Amiram Eldar, Aug 19 2024
CROSSREFS
Cf. A244417, A006519 (g=2), A038500 (g=3), A240226 (g=4), A060904 (g=5).
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jun 30 2014
STATUS
approved

Search completed in 0.009 seconds