Displaying 1-8 of 8 results found.
page
1
1, 2, 2, 3, 1, 4, 1, 5, 3, 2, 1, 6, 1, 2, 2, 7, 1, 6, 1, 3, 2, 2, 1, 8, 1, 2, 5, 3, 1, 4, 1, 9, 2, 2, 1, 10, 1, 2, 2, 5, 1, 4, 1, 3, 3, 2, 1, 11, 1, 2, 2, 3, 1, 8, 1, 5, 2, 2, 1, 6, 1, 2, 3, 12, 1, 4, 1, 3, 2, 2, 1, 13, 1, 2, 2, 3, 1, 4, 1, 7, 7, 2, 1, 6, 1, 2, 2, 5, 1, 6, 1, 3, 2, 2, 1, 14, 1, 2, 3, 3, 1, 4, 1, 5, 2
COMMENTS
Restricted growth sequence transform of the ordered pair [ A122841(n), A244417(n)].
Essentially also the restricted growth sequence transform of the unordered pair { A007814(n), A007949(n)}.
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A244417(n) = max(valuation(n, 2), valuation(n, 3));
\\ The following is equivalent:
\\ v322316 = rgs_transform(vector(up_to, n, Set([ A007814(n), A007949(n)])));
Number of powers of 6 modulo n.
+10
15
1, 2, 2, 3, 1, 2, 2, 4, 3, 2, 10, 3, 12, 3, 2, 5, 16, 3, 9, 3, 3, 11, 11, 4, 5, 13, 4, 4, 14, 2, 6, 6, 11, 17, 2, 3, 4, 10, 13, 4, 40, 3, 3, 12, 3, 12, 23, 5, 14, 6, 17, 14, 26, 4, 10, 5, 10, 15, 58, 3, 60, 7, 4, 7, 12, 11, 33, 18, 12, 3, 35, 4, 36, 5, 6, 11, 10, 13, 78, 5, 5, 41, 82, 4, 16
MATHEMATICA
a[n_] := Module[{e = IntegerExponent[n, {2, 3}]}, Max[e] + MultiplicativeOrder[6, n/Times @@ ({2, 3}^e)]]; Array[a, 100] (* Amiram Eldar, Aug 25 2024 *)
CROSSREFS
Cf. A054703 (base 2), A054704 (3), A054705 (4), A054706 (5), A054708 (7), A054709 (8), A054717 (9), A054710 (10), A351524 (11), A054712 (12), A054713 (13), A054714 (14), A054715 (15), A054716 (16).
1, 2, 3, 4, 1, 5, 1, 6, 7, 2, 1, 8, 1, 2, 3, 9, 1, 10, 1, 4, 3, 2, 1, 11, 1, 2, 12, 4, 1, 5, 1, 13, 3, 2, 1, 14, 1, 2, 3, 6, 1, 5, 1, 4, 7, 2, 1, 15, 1, 2, 3, 4, 1, 16, 1, 6, 3, 2, 1, 8, 1, 2, 7, 17, 1, 5, 1, 4, 3, 2, 1, 18, 1, 2, 3, 4, 1, 5, 1, 9, 19, 2, 1, 8, 1, 2, 3, 6, 1, 10, 1, 4, 3, 2, 1, 20, 1, 2, 7, 4, 1, 5, 1, 6, 3
COMMENTS
Restricted growth sequence transform of the ordered pair [ A007814(n), A007949(n)].
For all i, j:
That is, A003586 gives the positions of records (1, 2, 3, 4, 5, ...) in this sequence.
Sequence A126760 (without its initial zero) and this sequence are ordinal transforms of each other.
FORMULA
For s = A003586(n), a(s) = n = a((6k+1)*s) = a((6k-1)*s), where s is the n-th 3-smooth number and k > 0. - David A. Corneth, Dec 03 2018
a(n) = Sum{k=1..n} [ A126760(k)== A126760(n)], where [ ] is the Iverson bracket.
a(n) = A071521( A065331(n)). [Found by Sequence Machine and also by LODA miner]
a(n) = A323884(25*n). [Conjectured by Sequence Machine]
(End)
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
(PARI)
A071521(n) = { my(t=1/3); sum(k=0, logint(n, 3), t*=3; logint(n\t, 2)+1); }; \\ From A071521.
CROSSREFS
Cf. A003586 (positions of records, the first occurrence of n), A007814, A007949, A065331, A071521, A072078, A087465, A122841, A126760 (ordinal transform), A322316, A323883, A323884.
Numerator of the asymptotic mean over the positive integers of the maximum exponent in the prime factorization of the largest prime(n)-smooth divisor function.
+10
4
1, 13, 51227, 926908275845, 548123689541583443758024333411, 629375533747930240763697631488051776709110194920714685268467462860005271344878614119
COMMENTS
The numbers of digits of the terms are 1, 2, 5, 12, 30, 84, 215, 537, 1237, 2930, 6775, 15484, 35185, ... .
FORMULA
f(n) = lim_{m->oo} (1/m) * Sum_{i=1..m} A375537(n, i).
f(n) = Sum_{k>=1} k * (d(k+1, prime(n)) - d(k, prime(n))), where d(k, p) = Product_{q prime <= p} (1 - 1/q^k).
EXAMPLE
Fractions begins: 1, 13/10, 51227/36540, 926908275845/636617813832, 548123689541583443758024333411/369693143251781030056182487680, ...
For n = 1, prime(1) = 2, the "2-smooth numbers" are the powers of 2 ( A000079), and the sequence that gives the exponent of the largest power of 2 that divides n is A007814, whose asymptotic mean is 1.
For n = 2, prime(2) = 3, the 3-smooth numbers are in A003586, and the sequence that gives the maximum exponent in the prime factorization of the largest 3-smooth divisor of n is A244417, whose asymptotic mean is 13/10.
MATHEMATICA
d[k_, n_] := Product[1 - 1/Prime[i]^k, {i, 1, n}]; f[n_] := Sum[k * (d[k+1, n] - d[k, n]), {k, 1, Infinity}]; Numerator[Array[f, 6]]
1, 1, 2, 1, 2, 1, 3, 1, 2, 3, 4, 1, 5, 4, 5, 1, 6, 2, 7, 3, 6, 7, 8, 1, 9, 8, 2, 4, 10, 2, 11, 1, 9, 10, 12, 1, 13, 11, 12, 3, 14, 3, 15, 5, 6, 13, 16, 1, 17, 14, 15, 7, 18, 2, 19, 4, 16, 17, 20, 3, 21, 18, 8, 1, 22, 4, 23, 9, 19, 20, 24, 1, 25, 21, 22, 10, 26, 5, 27, 2, 3, 23, 28, 4, 29, 24, 25, 5, 30, 5, 31, 11, 26, 27, 32, 1
PROG
(PARI)
up_to = 65537;
ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om, invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om, invec[i], (1+pt))); outvec; };
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A244417(n) = max(valuation(n, 2), valuation(n, 3));
v322317 = ordinal_transform(v322316);
The maximum exponent in the prime factorization of the largest 5-smooth divisor of n.
+10
3
0, 1, 1, 2, 1, 1, 0, 3, 2, 1, 0, 2, 0, 1, 1, 4, 0, 2, 0, 2, 1, 1, 0, 3, 2, 1, 3, 2, 0, 1, 0, 5, 1, 1, 1, 2, 0, 1, 1, 3, 0, 1, 0, 2, 2, 1, 0, 4, 0, 2, 1, 2, 0, 3, 1, 3, 1, 1, 0, 2, 0, 1, 2, 6, 1, 1, 0, 2, 1, 1, 0, 3, 0, 1, 2, 2, 0, 1, 0, 4, 4, 1, 0, 2, 1, 1, 1, 3, 0, 2, 0, 2, 1, 1, 1, 5, 0, 1, 2, 2, 0, 1, 0, 3, 1
FORMULA
a(n) = 0 if and only if n is a 7-rough number ( A007775).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A375538(3)/ A375539(3) = 51227/36540 = 1.401943076...
MATHEMATICA
a[n_] := Max[IntegerExponent[n, {2, 3, 5}]]; Array[a, 100]
PROG
(PARI) a(n) = max(max(valuation(n, 2), valuation(n, 3)), valuation(n, 5));
Square array A(n, k) (n, k >= 1) read by antidiagonals in ascending order: A(n, k) = Max_{i = 1..n} v_prime(i)(k), where v_p(k) is the p-adic valuation of k.
+10
3
0, 0, 1, 0, 1, 0, 0, 1, 1, 2, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 1, 0, 1, 1, 2, 1, 1, 0, 0, 1, 1, 2, 1, 1, 0, 3, 0, 1, 1, 2, 1, 1, 0, 3, 0, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 2, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 2, 0, 0, 1, 1, 2, 1, 1, 1, 3, 2, 1, 0, 2, 0, 1
COMMENTS
For a given n, A(n, k) is the sequence that gives the maximum exponent in the prime factorization of the largest prime(n)-smooth divisor of k.
FORMULA
A(n, k) = Max_{i=1..n} A249344(i, k).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{i=1..m} A(n, i) = A375538(n)/ A375539(n).
EXAMPLE
Array begins:
n | n-th row
---+-----------------------------
1 | 0, 1, 0, 2, 0, 1, 0, 3, 0, 1
2 | 0, 1, 1, 2, 0, 1, 0, 3, 2, 1
3 | 0, 1, 1, 2, 1, 1, 0, 3, 2, 1
4 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
5 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
6 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
7 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
8 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
9 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
10 | 0, 1, 1, 2, 1, 1, 1, 3, 2, 1
MATHEMATICA
A[n_, k_] := Max[IntegerExponent[k, Prime[Range[n]]]]; Table[A[n - k + 1, k], {n, 1, 14}, {k, 1 n}] // Flatten
PROG
(PARI) A(n, k) = vecmax(apply(x -> valuation(k, x), primes(n)));
6-adic value of 1/n for n >= 1.
+10
1
1, 6, 6, 36, 1, 6, 1, 216, 36, 6, 1, 36, 1, 6, 6, 1296, 1, 36, 1, 36, 6, 6, 1, 216, 1, 6, 216, 36, 1, 6, 1, 7776, 6, 6, 1, 36, 1, 6, 6, 216, 1, 6, 1, 36, 36, 6, 1, 1296, 1, 6, 6, 36, 1, 216, 1, 216, 6, 6, 1, 36, 1, 6, 36, 46656, 1, 6, 1, 36, 6, 6, 1, 216, 1, 6, 6, 36, 1, 6, 1, 1296, 1296, 6, 1, 36, 1, 6
COMMENTS
For the definition of 'g-adic value of x', called |x|_g with g an integer >= 2, see the Mahler reference, p. 7. Sometimes also called g-adic absolute value of x. If g is not a prime then this is called a non-archimeden pseudo-valuation. See Mahler, p. 10.
REFERENCES
Kurt Mahler, p-adic numbers and their functions, second ed., Cambridge University Press, 1981.
FORMULA
a(n) = 1 if n == 1 or 5 (mod 6). a(n) = 6^max( A007814(n), A007949(n)) if n == 0 (mod 6), a(n) = 6^ A007814(n) if n == 2 or 4 (mod 6), a(n) = 6^ A007949(n) if n == 3 (mod 6). The exponents, called f(1/n) in the Mahler reference, are given in A244417(n).
EXAMPLE
a(6) = 6^max(1,1) = 6^1 = 6. a(12) = 6^max(2,1) = 6^2 = 36,
a(18) = 6^max(1,2) = 36, a(24) = 6^max(3,1) = 6^3 = 216, ...
a(2) = 6^1 = 6, a(8) = 6^3 = 216, a(14) = 6^1 = 6, ...
a(3) = 6^1 = 6, a(9) = 6^2 = 36, a(15) = 6^1 = 6, ...
a(4) = 6^2 = 36, a(10) = 6^1 = 6, a(16) = 6^4 = 1296, ...
MATHEMATICA
a[n_] := 6^Max[IntegerExponent[n, {2, 3}]]; Array[a, 100] (* Amiram Eldar, Aug 19 2024 *)
PROG
(PARI) a(n) = 6^max(valuation(n, 2), valuation(n, 3)); \\ Amiram Eldar, Aug 19 2024
Search completed in 0.009 seconds
|