[go: up one dir, main page]

login
Search: a237667 -id:a237667
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of strict integer partitions of n such that no part can be written as a nonnegative linear combination of the others.
+10
81
1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 5, 3, 6, 5, 7, 6, 9, 7, 11, 10, 14, 12, 16, 15, 20, 17, 24, 22, 27, 29, 32, 30, 41, 36, 49, 45, 50, 52, 65, 63, 70, 77, 80, 83, 104, 98, 107, 116, 126, 134, 152, 148, 162, 180, 196, 195, 227, 227, 238, 272, 271, 293, 333, 325
OFFSET
0,6
COMMENTS
A way of writing n as a (presumed nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
EXAMPLE
The a(16) = 6 through a(22) = 12 strict partitions:
(16) (17) (18) (19) (20) (21) (22)
(9,7) (9,8) (10,8) (10,9) (11,9) (12,9) (13,9)
(10,6) (10,7) (11,7) (11,8) (12,8) (13,8) (14,8)
(11,5) (11,6) (13,5) (12,7) (13,7) (15,6) (15,7)
(13,3) (12,5) (14,4) (13,6) (14,6) (16,5) (16,6)
(7,5,4) (13,4) (7,6,5) (14,5) (17,3) (17,4) (17,5)
(14,3) (8,7,3) (15,4) (8,7,5) (19,2) (18,4)
(15,2) (16,3) (9,6,5) (11,10) (19,3)
(7,6,4) (17,2) (9,7,4) (8,7,6) (12,10)
(8,6,5) (11,5,4) (9,7,5) (9,7,6)
(9,6,4) (10,7,4) (9,8,5)
(10,8,3) (7,6,5,4)
(11,6,4)
(11,7,3)
MATHEMATICA
combs[n_, y_]:=With[{s=Table[{k, i}, {k, y}, {i, 0, Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&And@@Table[combs[#[[k]], Delete[#, k]]=={}, {k, Length[#]}]&]], {n, 0, 15}]
PROG
(Python)
from sympy.utilities.iterables import partitions
def A364350(n):
if n <= 1: return 1
alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 1
for p in partitions(n, k=n-1):
if max(p.values(), default=0)==1:
s = set(p)
if not any(set(t).issubset(s-{q}) for q in s for t in alist[q]):
c += 1
return c # Chai Wah Wu, Sep 23 2023
CROSSREFS
For sums of subsets instead of combinations of partitions we have A151897.
For sums instead of combinations we have A237667, binary A236912.
For subsets instead of partitions we have A326083, complement A364914.
The complement in strict partitions is A364839, non-strict A364913.
A more strict variation is A364915.
The case of all positive coefficients is A365006.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, ranks A299702.
A116861 and A364916 count linear combinations of strict partitions.
A323092 (ranks A320340) and A120641 count double-free partitions.
A364912 counts linear combinations of partitions of k.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 15 2023
EXTENSIONS
More terms and offset corrected by Martin Fuller, Sep 11 2023
STATUS
approved
Number of strict integer partitions of n containing the sum of some subset of the parts. A variation of sum-full strict partitions.
+10
78
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 1, 4, 3, 8, 6, 11, 10, 17, 16, 26, 25, 39, 39, 54, 60, 82, 84, 116, 126, 160, 177, 222, 242, 302, 337, 402, 453, 542, 601, 722, 803, 936, 1057, 1234, 1373, 1601, 1793, 2056, 2312, 2658, 2950, 3395, 3789, 4281, 4814, 5452, 6048
OFFSET
0,11
COMMENTS
First differs from A316402 at a(16) = 11 due to (7,5,3,1).
EXAMPLE
The a(6) = 1 through a(16) = 11 partitions (A=10):
(321) . (431) . (532) (5321) (642) (5431) (743) (6432) (853)
(541) (651) (6421) (752) (6531) (862)
(4321) (5421) (7321) (761) (7431) (871)
(6321) (5432) (7521) (6532)
(6431) (9321) (6541)
(6521) (54321) (7432)
(7421) (7621)
(8321) (8431)
(8521)
(A321)
(64321)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Intersection[#, Total/@Subsets[#, {2, Length[#]}]]!={}&]], {n, 0, 30}]
CROSSREFS
The non-strict complement is A237667, ranks A364531.
The non-strict version is A237668, ranks A364532.
The complement in strict partitions is A364349, binary A364533.
The linear combination-free version is A364350.
For subsets of {1..n} we have A364534, complement A151897.
The binary version is A364670, allowing re-used parts A363226.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, strict A275972, ranks A299702.
A236912 counts binary sum-free partitions, complement A237113.
A323092 counts double-free partitions, ranks A320340.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 01 2023
STATUS
approved
Number of sum-full subsets of {1,...,n}; subsets A such that there is a solution to x+y=z for x,y,z in A.
+10
75
0, 1, 2, 7, 16, 40, 86, 195, 404, 873, 1795, 3727, 7585, 15537, 31368, 63582, 127933, 257746, 517312, 1038993, 2081696, 4173322, 8355792, 16731799, 33484323, 67014365, 134069494, 268234688, 536562699, 1073326281, 2146849378, 4294117419, 8588623348, 17178130162
OFFSET
1,3
COMMENTS
In sumset notation, number of subsets A of {1,...,n} such that the intersection of A and 2A is nonempty.
A variation of binary sum-full sets where parts can be re-used, this sequence counts subsets of {1..n} containing a part equal to the sum of two other (possibly equal) parts. The complement is counted by A007865. The non-binary version is A364914. For non-re-usable parts we have A088809. - Gus Wiseman, Aug 14 2023
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..88
Eric Weisstein's World of Mathematics, Sum-Free Set
FORMULA
a(n) = 2^n - A007865(n).
EXAMPLE
The a(1) = 0 through a(5) = 16 subsets:
. {1,2} {1,2} {1,2} {1,2}
{1,2,3} {2,4} {2,4}
{1,2,3} {1,2,3}
{1,2,4} {1,2,4}
{1,3,4} {1,2,5}
{2,3,4} {1,3,4}
{1,2,3,4} {1,4,5}
{2,3,4}
{2,3,5}
{2,4,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], Intersection[#, Total/@Tuples[#, 2]]!={}&]], {n, 0, 10}] (* Gus Wiseman, Aug 14 2023 *)
CROSSREFS
The complement is counted by A007865.
The version without re-usable parts is A088809 (differences A364756), complement A085489 (differences A364755).
The non-binary version is A364914, complement A326083.
The non-binary version w/o re-usable parts is A364534, complement A151897.
The version for partitions is A363225:
- ranks A364348,
- strict A363226,
- non-binary A364839,
- without re-usable parts A237113,
- non-binary without re-usable parts A237668.
The complement for partitions is A364345:
- ranks A364347,
- strict A364346,
- non-binary A364350,
- without re-usable parts A236912,
- non-binary without re-usable parts A237667.
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 20 2004
EXTENSIONS
Terms a(31) and beyond from Fausto A. C. Cariboni, Oct 01 2020
STATUS
approved
Triangle read by rows: T(n,k) is the number of partitions of n such that the sum of the parts, counted without multiplicities, is equal to k (n>=1, k>=1).
+10
72
1, 1, 1, 1, 0, 2, 1, 1, 1, 2, 1, 0, 2, 1, 3, 1, 1, 3, 1, 1, 4, 1, 0, 3, 2, 2, 2, 5, 1, 1, 3, 3, 2, 4, 2, 6, 1, 0, 5, 2, 3, 4, 4, 3, 8, 1, 1, 4, 3, 4, 7, 4, 5, 3, 10, 1, 0, 5, 3, 4, 7, 7, 6, 6, 5, 12, 1, 1, 6, 4, 3, 12, 6, 8, 7, 9, 5, 15, 1, 0, 6, 4, 5, 10, 10, 9, 10, 11, 10, 7, 18, 1, 1, 6, 4, 5, 15, 11, 13, 9, 16, 11, 13, 8, 22
OFFSET
1,6
COMMENTS
Conjecture: Reverse the rows of the table to get an infinite lower-triangular matrix b with 1's on the main diagonal. The third diagonal of the inverse of b is minus A137719. - George Beck, Oct 26 2019
Proof: The reversed rows yield the matrix I+N where N is strictly lower triangular, N[i,j] = 0 for j >= i, having its 2nd diagonal equal to the 2nd column (1, 0, 1, 0, 1, ...): N[i+1,i] = A000035(i), i >= 1, and 3rd diagonal equal to the 3rd column of this triangle, (2, 1, 2, 3, 3, 3, ...): N[i+2,i] = A137719(i), i >= 1. It is known that (I+N)^-1 = 1 - N + N^2 - N^3 +- .... Here N^2 has not only the second but also the 3rd diagonal zero, because N^2[i+2,i] = N[i+2,i+1]*N[i+1,i] = A000035(i+1)*A000035(i) = 0. Therefore the 3rd diagonal of (I+N)^-1 is equal to -A137719 without leading 0. - M. F. Hasler, Oct 27 2019
From Gus Wiseman, Aug 27 2023: (Start)
Also the number of ways to write n-k as a nonnegative linear combination of a strict integer partition of k. Also the number of ways to write n as a (strictly) positive linear combination of a strict integer partition of k. Row n=7 counts the following:
7*1 . 1*2+5*1 1*3+4*1 1*3+2*2 1*5+2*1 1*7
2*2+3*1 2*3+1*1 1*4+3*1 1*3+1*2+2*1 1*4+1*3
3*2+1*1 1*5+1*2
1*6+1*1
1*4+1*2+1*1
(End)
LINKS
P. J. Rossky, M. Karplus, The enumeration of Goldstone diagrams in many-body perturbation theory, J. Chem. Phys. 64 (1976) 1569, equation (16)(1).
FORMULA
G.f.: -1 + Product_{j>=1} (1 + t^j*x^j/(1-x^j)).
Sum_{k=1..n} T(n,k) = A000041(n).
T(n,n) = A000009(n).
Sum_{k=1..n} k*T(n,k) = A014153(n-1).
T(n,1) = 1. T(n,2) = A000035(n+1). T(n,3) = A137719(n-2). - R. J. Mathar, Oct 27 2019
T(n,4) = A002264(n-1) + A121262(n). - R. J. Mathar, Oct 28 2019
EXAMPLE
T(10,7) = 4 because we have [6,1,1,1,1], [4,3,3], [4,2,2,1,1] and [4,2,1,1,1,1] (6+1=4+3=4+2+1=7).
Triangle starts:
1;
1, 1;
1, 0, 2;
1, 1, 1, 2;
1, 0, 2, 1, 3;
1, 1, 3, 1, 1, 4;
1, 0, 3, 2, 2, 2, 5;
1, 1, 3, 3, 2, 4, 2, 6;
1, 0, 5, 2, 3, 4, 4, 3, 8;
1, 1, 4, 3, 4, 7, 4, 5, 3, 10;
1, 0, 5, 3, 4, 7, 7, 6, 6, 5, 12;
1, 1, 6, 4, 3, 12, 6, 8, 7, 9, 5, 15;
...
MAPLE
g:= -1+product(1+t^j*x^j/(1-x^j), j=1..40): gser:= simplify(series(g, x=0, 18)): for n from 1 to 14 do P[n]:=sort(coeff(gser, x^n)) od: for n from 1 to 14 do seq(coeff(P[n], t^j), j=1..n) od; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i) option remember; local f, g, j;
if n=0 then [1] elif i<1 then [ ] else f:= b(n, i-1);
for j to n/i do
f:= zip((x, y)->x+y, f, [0$i, b(n-i*j, i-1)[]], 0)
od; f
fi
end:
T:= n-> subsop(1=NULL, b(n, n))[]:
seq(T(n), n=1..20); # Alois P. Heinz, Feb 27 2013
MATHEMATICA
max = 14; s = Series[-1+Product[1+t^j*x^j/(1-x^j), {j, 1, max}], {x, 0, max}, {t, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {t, 0, k}]; Table[t[n, k], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 17 2014 *)
Table[Length[Select[IntegerPartitions[n], Total[Union[#]]==k&]], {n, 0, 10}, {k, 0, n}] (* Gus Wiseman, Aug 29 2023 *)
PROG
(PARI) A116861(n, k, s=0)={forpart(X=n, vecsum(Set(X))==k&&s++, k); s} \\ M. F. Hasler, Oct 27 2019
CROSSREFS
Cf. A000041 (row sums), A000009 (diagonal), A014153.
Cf. A114638 (count partitions with #parts = sum(distinct parts)).
Column 1: A000012, column 2: A000035(1..), column 3: A137719(1..).
For subsets instead of partitions we have A026820.
This statistic is ranked by A066328.
The central diagonal is T(2n,n) = A364910(n), non-strict A364907.
Partial sums of columns are columns of A364911.
Same as A364916 (offset 0) with rows reversed.
A008284 counts partitions by length, strict A008289.
A364912 counts linear combinations of partitions.
A364913 counts combination-full partitions, strict A364839.
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Feb 27 2006
STATUS
approved
Number of partitions of n such that some part is a sum of two other parts.
+10
65
0, 0, 0, 0, 1, 1, 3, 3, 8, 10, 17, 22, 37, 47, 71, 91, 133, 170, 236, 301, 408, 515, 686, 860, 1119, 1401, 1798, 2232, 2829, 3495, 4378, 5381, 6682, 8165, 10060, 12238, 14958, 18116, 22018, 26533, 32071, 38490, 46265, 55318, 66193, 78843, 93949, 111503, 132326
OFFSET
0,7
COMMENTS
These are partitions containing the sum of some 2-element submultiset of the parts, a variation of binary sum-full partitions where parts cannot be re-used, ranked by A364462. The complement is counted by A236912. The non-binary version is A237668. For re-usable parts we have A363225. - Gus Wiseman, Aug 10 2023
FORMULA
a(n) = A000041(n) - A236912(n).
EXAMPLE
Of the 11 partitions of 6, only these 3 include a part that is a sum of two other parts: [3,2,1], [2,2,1,1], [2,1,1,1,1]. Thus, a(6) = 3.
From Gus Wiseman, Aug 09 2023: (Start)
The a(0) = 0 through a(9) = 10 partitions:
. . . . (211) (2111) (321) (3211) (422) (3321)
(2211) (22111) (431) (4221)
(21111) (211111) (3221) (4311)
(4211) (5211)
(22211) (32211)
(32111) (42111)
(221111) (222111)
(2111111) (321111)
(2211111)
(21111111)
(End)
MATHEMATICA
z = 20; t = Map[Count[Map[Length[Cases[Map[Total[#] &, Subsets[#, {2}]], Apply[Alternatives, #]]] &, IntegerPartitions[#]], 0] &, Range[z]] (* A236912 *)
u = PartitionsP[Range[z]] - t (* A237113, Peter J. C. Moses, Feb 03 2014 *)
Table[Length[Select[IntegerPartitions[n], Intersection[#, Total/@Subsets[#, {2}]]!={}&]], {n, 0, 30}] (* Gus Wiseman, Aug 09 2023 *)
CROSSREFS
The complement for subsets is A085489, with re-usable parts A007865.
For subsets of {1..n} we have A088809, with re-usable parts A093971.
The complement is counted by A236912, ranks A364461.
The non-binary complement is A237667, ranks A364531.
The non-binary version is A237668, ranks A364532.
With re-usable parts we have A363225, ranks A364348.
The complement with re-usable parts is A364345, ranks A364347.
These partitions have ranks A364462.
The strict case is A364670, with re-usable parts A363226.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, ranks A299702.
A323092 counts double-free partitions, ranks A320340.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 04 2014
EXTENSIONS
a(0)=0 prepended by Alois P. Heinz, Sep 17 2023
STATUS
approved
Number of subsets of {1, ..., n} that are not sum-free.
+10
62
0, 0, 0, 1, 3, 10, 27, 67, 154, 350, 763, 1638, 3450, 7191, 14831, 30398, 61891, 125557, 253841, 511818, 1029863, 2069341, 4153060, 8327646, 16687483, 33422562, 66916342, 133936603, 268026776, 536277032, 1072886163, 2146245056, 4293187682, 8587371116
OFFSET
0,5
COMMENTS
a(n) = 2^n - A085489(n); a non-sum-free subset contains at least one subset {u,v, w} with w=u+v.
A variation of binary sum-full sets where parts cannot be re-used, this sequence counts subsets of {1..n} with an element equal to the sum of two distinct others. The complement is counted by A085489. The non-binary version is A364534. For re-usable parts we have A093971. - Gus Wiseman, Aug 10 2023
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..75
Eric Weisstein's World of Mathematics, Sum-Free Set
Reinhard Zumkeller, Illustration of initial terms
EXAMPLE
From Gus Wiseman, Aug 10 2023: (Start)
The set S = {1,3,6,8} has pair-sums {4,7,9,11,14}, which are all missing from S, so it is not counted under a(8).
The set {1,4,6,7} has pair-sum 1 + 6 = 7, so is counted under a(7).
The a(1) = 0 through a(5) = 10 sets:
. . {1,2,3} {1,2,3} {1,2,3}
{1,3,4} {1,3,4}
{1,2,3,4} {1,4,5}
{2,3,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
(End)
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], Intersection[#, Total/@Subsets[#, {2}]]!={}&]], {n, 0, 10}] (* Gus Wiseman, Aug 10 2023 *)
CROSSREFS
The complement is counted by A085489, differences A364755.
With re-usable parts we have A093971, for partitions A363225.
The complement for partitions is A236912:
non-binary A237667,
ranks A364461,
strict A364533.
The version for partitions is A237113:
non-binary A237668,
ranks A364462,
strict A364670.
The non-binary version is A364534, complement A151897.
First differences are A364756.
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 19 2003
EXTENSIONS
Terms a(32) and beyond from Fausto A. C. Cariboni, Sep 28 2020
STATUS
approved
Number of partitions of n such that no part is a sum of two other parts.
+10
58
1, 1, 2, 3, 4, 6, 8, 12, 14, 20, 25, 34, 40, 54, 64, 85, 98, 127, 149, 189, 219, 277, 316, 395, 456, 557, 638, 778, 889, 1070, 1226, 1461, 1667, 1978, 2250, 2645, 3019, 3521, 3997, 4652, 5267, 6093, 6909, 7943, 8982, 10291, 11609, 13251, 14947, 16984, 19104
OFFSET
0,3
COMMENTS
These are partitions containing the sum of no 2-element submultiset of the parts, a variation of binary sum-free partitions where parts cannot be re-used, ranked by A364461. The complement is counted by A237113. The non-binary version is A237667. For re-usable parts we have A364345. - Gus Wiseman, Aug 09 2023
FORMULA
a(n) = A000041(n) - A237113(n).
EXAMPLE
Of the 11 partitions of 6, only these 3 include a part that is a sum of two other parts: [3,2,1], [2,2,1,1], [2,1,1,1,1]. Thus, a(6) = 11 - 3 = 8.
From Gus Wiseman, Aug 09 2023: (Start)
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (221) (51) (61) (62)
(311) (222) (322) (71)
(11111) (411) (331) (332)
(3111) (421) (521)
(111111) (511) (611)
(2221) (2222)
(4111) (3311)
(31111) (5111)
(1111111) (41111)
(311111)
(11111111)
(End)
MATHEMATICA
z = 20; t = Map[Count[Map[Length[Cases[Map[Total[#] &, Subsets[#, {2}]], Apply[Alternatives, #]]] &, IntegerPartitions[#]], 0] &, Range[z]] (* A236912 *)
u = PartitionsP[Range[z]] - t (* A237113, Peter J. C. Moses, Feb 03 2014 *)
Table[Length[Select[IntegerPartitions[n], Intersection[#, Total/@Subsets[#, {2}]]=={}&]], {n, 0, 15}] (* Gus Wiseman, Aug 09 2023 *)
CROSSREFS
For subsets of {1..n} we have A085489, complement A088809.
The complement is counted by A237113, ranks A364462.
The non-binary version is A237667, ranks A364531.
The non-binary complement is A237668, ranks A364532.
The version with re-usable parts is A364345, ranks A364347.
The (strict) version for linear combinations of parts is A364350.
These partitions have ranks A364461.
The strict case is A364533, non-binary A364349.
The strict complement is A364670, with re-usable parts A363226.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, ranks A299702.
A323092 counts double-free partitions, ranks A320340.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 01 2014
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Sep 17 2023
STATUS
approved
Number of partitions of n such that some part is a sum of two or more other parts.
+10
52
0, 0, 0, 0, 1, 1, 4, 4, 10, 13, 23, 27, 49, 60, 93, 115, 170, 210, 300, 370, 510, 632, 846, 1031, 1359, 1670, 2159, 2630, 3355, 4082, 5130, 6220, 7739, 9360, 11555, 13889, 16991, 20402, 24824, 29636, 35855, 42707, 51309, 60955, 72896, 86328, 102826, 121348
OFFSET
0,7
COMMENTS
These are partitions containing the sum of some non-singleton submultiset of the parts, a variation of non-binary sum-full partitions where parts cannot be re-used, ranked by A364532. The complement is counted by A237667. The binary version is A237113, or A363225 with re-usable parts. This sequence is weakly increasing. - Gus Wiseman, Aug 12 2023
EXAMPLE
a(6) = 4 counts these partitions: 123, 1113, 1122, 11112.
From Gus Wiseman, Aug 12 2023: (Start)
The a(0) = 0 through a(9) = 13 partitions:
. . . . (211) (2111) (321) (3211) (422) (3321)
(2211) (22111) (431) (4221)
(3111) (31111) (3221) (4311)
(21111) (211111) (4211) (5211)
(22211) (32211)
(32111) (33111)
(41111) (42111)
(221111) (222111)
(311111) (321111)
(2111111) (411111)
(2211111)
(3111111)
(21111111)
(End)
MATHEMATICA
z = 20; m = Map[Count[Map[MemberQ[#, Apply[Alternatives, Map[Apply[Plus, #] &, DeleteDuplicates[DeleteCases[Subsets[#], _?(Length[#] < 2 &)]]]]] &, IntegerPartitions[#]], False] &, Range[z]]; PartitionsP[Range[z]] - m
(* Peter J. C. Moses, Feb 10 2014 *)
Table[Length[Select[IntegerPartitions[n], Intersection[#, Total/@Subsets[#, {2, Length[#]}]]!={}&]], {n, 0, 15}] (* Gus Wiseman, Aug 12 2023 *)
CROSSREFS
Cf. A179009.
The binary complement is A236912, ranks A364461.
The binary version is A237113, ranks A364462.
The complement is counted by A237667, ranks A364531.
The binary version with re-usable parts is A363225, ranks A364348.
The strict case is A364272.
The binary complement with re-usable parts is A364345, ranks A364347.
These partitions have ranks A364532.
For subsets instead of partitions we have A364534, complement A151897.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, ranks A299702.
A299701 counts distinct subset-sums of prime indices.
A323092 counts double-free partitions, ranks A320340.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 11 2014
EXTENSIONS
a(21)-a(47) from Giovanni Resta, Feb 22 2014
STATUS
approved
Number of subsets of {1..n} containing some element equal to the sum of two or more distinct other elements. A variation of sum-full subsets without re-used elements.
+10
52
0, 0, 0, 1, 3, 10, 27, 68, 156, 357, 775, 1667, 3505, 7303, 15019, 30759, 62489, 126619, 255542, 514721, 1034425, 2076924, 4164650, 8346306, 16715847, 33467324, 66982798, 134040148, 268179417, 536510608, 1073226084, 2146759579, 4293930436, 8588485846, 17177799658
OFFSET
0,5
LINKS
FORMULA
a(n) = 2^n - A151897(n). - Andrew Howroyd, Jan 27 2024
EXAMPLE
The a(0) = 0 through a(5) = 10 subsets:
. . . {1,2,3} {1,2,3} {1,2,3}
{1,3,4} {1,3,4}
{1,2,3,4} {1,4,5}
{2,3,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], Intersection[#, Total/@Subsets[#, {2, Length[#]}]]!={}&]], {n, 0, 10}]
CROSSREFS
The binary version is A088809, complement A085489.
The complement is counted by A151897.
The complement for partitions is A237667, ranks A364531.
For partitions we have A237668, ranks A364532.
For strict partitions we have A364272, complement A364349.
A108917 counts knapsack partitions, strict A275972.
A236912 counts sum-free partitions w/o re-used parts, complement A237113.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 02 2023
EXTENSIONS
a(16)-a(25) from Chai Wah Wu, Nov 14 2023
a(26) onwards (using A151897) added by Andrew Howroyd, Jan 27 2024
STATUS
approved
Number of integer partitions of n containing three parts (a,b,c) (repeats allowed) such that a + b = c. A variation of sum-full partitions.
+10
50
0, 0, 0, 1, 1, 2, 4, 5, 9, 14, 21, 29, 43, 58, 81, 109, 148, 195, 263, 339, 445, 574, 744, 942, 1209, 1515, 1923, 2399, 3005, 3721, 4629, 5693, 7024, 8589, 10530, 12804, 15596, 18876, 22870, 27538, 33204, 39816, 47766, 57061, 68161, 81099, 96510, 114434, 135634
OFFSET
0,6
COMMENTS
Note that, by this definition, the partition (2,1) is sum-full, because (1,1,2) is a triple satisfying a + b = c.
EXAMPLE
The a(3) = 1 through a(9) = 14 partitions:
(21) (211) (221) (42) (421) (422) (63)
(2111) (321) (2221) (431) (432)
(2211) (3211) (521) (621)
(21111) (22111) (3221) (3321)
(211111) (4211) (4221)
(22211) (4311)
(32111) (5211)
(221111) (22221)
(2111111) (32211)
(42111)
(222111)
(321111)
(2211111)
(21111111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Select[Tuples[#, 3], #[[1]]+#[[2]]==#[[3]]&]!={}&]], {n, 0, 15}]
PROG
(Python)
from collections import Counter
from itertools import combinations_with_replacement
from sympy.utilities.iterables import partitions
def A363225(n): return sum(1 for p in partitions(n) if any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()), 3))) # Chai Wah Wu, Sep 21 2023
CROSSREFS
For subsets of {1..n} we have A093971, A088809 without re-using parts.
The complement for subsets is A007865, A085489 without re-using parts.
Without re-using parts we have A237113, complement A236912.
For sums of any length > 1 (without re-usable parts) we have A237668, complement A237667.
The strict case is A363226.
The complement is counted by A364345, strict A364346.
These partitions have ranks A364348, complement A364347.
The strict linear combination-free version is A364350.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 19 2023
EXTENSIONS
a(31)-a(48) from Chai Wah Wu, Sep 21 2023
STATUS
approved

Search completed in 0.050 seconds