[go: up one dir, main page]

login
Search: a234510 -id:a234510
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 10*binomial(9*n + 10, n)/(9*n + 10).
+10
14
1, 10, 135, 2100, 35475, 632502, 11714745, 223198440, 4346520750, 86128357150, 1731030945644, 35202562937100, 723029038312230, 14976976398326250, 312522428615310000, 6563314391270476752, 138617681440915119975, 2942332729799060033100, 62735156704285184848950
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r,n)/(n*p + r), where p = 9, r = 10.
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007.
J-C. Aval, Multivariate Fuss-Catalan Numbers, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
FORMULA
G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 9, r = 10.
From _Peter Bala, Oct 16 2015: (Start)
O.g.f. A(x) = 1/x * series reversion (x*C(-x)^10), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11.
A(x)^(1/10) is the o.g.f. for A062994. (End)
D-finite with recurrence: 128*n*(8*n+3)*(4*n+3)*(8*n+9)*(2*n+1)*(8*n+7)*(4*n+5)*(8*n+5)*a(n) -81*(9*n+2)*(9*n+4)*(3*n+2)*(9*n+8)*(9*n+1)*(3*n+1)*(9*n+5)*(9*n+7)*a(n-1)=0. - R. J. Mathar, Feb 21 2020
MATHEMATICA
Table[10 Binomial[9 n + 10, n]/(9 n + 10), {n, 0, 30}]
PROG
(PARI) a(n) = 10*binomial(9*n+10, n)/(9*n+10);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/10))^10+x*O(x^n)); polcoeff(B, n)}
(Magma) [10*Binomial(9*n+10, n)/(9*n+10): n in [0..30]];
CROSSREFS
Cf. A062994, A000245 (k = 3), A006629 (k = 4), A196678 (k = 5), A233668 (k = 6), A233743 (k = 7), A233835 (k = 8), A234467 (k = 9), A229963 (k = 11).
KEYWORD
nonn,easy
AUTHOR
Tim Fulford, Dec 28 2013
STATUS
approved
a(n) = 3*binomial(8*n+6,n)/(4*n+3).
+10
14
1, 6, 63, 812, 11655, 178794, 2869685, 47593176, 809172936, 14028048650, 247039158366, 4406956913268, 79470057050020, 1446283758823470, 26529603944225670, 489989612605050800, 9104498753815680600, 170073237411754811568, 3192081704235788729043
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p = 8, r = 6.
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p = 8, r = 6.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^6), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/6) is the o.g.f. for A007556. - Peter Bala, Oct 14 2015
D-finite with recurrence: 7*n*(7*n+4)*(7*n+1)*(7*n+5)*(7*n+2)*(7*n+6)*(7*n+3)*a(n) -128*(8*n+3)*(4*n-1)*(8*n+1)*(2*n+1)*(8*n-1)*(4*n+1)*(8*n+5)*a(n-1)=0. - R. J. Mathar, Feb 21 2020
MATHEMATICA
Table[3 Binomial[8 n + 6, n]/(4 n + 3), {n, 0, 40}] (* Vincenzo Librandi, Dec 26 2013 *)
PROG
(PARI) a(n) = 3*binomial(8*n+6, n)/(4*n+3);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(4/3))^6+x*O(x^n)); polcoeff(B, n)}
(Magma) [3*Binomial(8*n+6, n)/(4*n+3): n in [0..30]]; // Vincenzo Librandi, Dec 26 2013
KEYWORD
nonn,easy
AUTHOR
Tim Fulford, Dec 26 2013
STATUS
approved
a(n) = 4*binomial(10*n+8,n)/(5*n+4).
+10
14
1, 8, 108, 1776, 32430, 632016, 12876864, 270964320, 5843355957, 128462407840, 2868356980060, 64869895026144, 1482877843096650, 34207542810153216, 795318309360948240, 18617396126132233920, 438423206616057162258, 10379232525028947311160, 246878659984195222962220
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p = 10, r = 8.
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p = 10, r = 8.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^8), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/8) is the o.g.f. for A059968. - Peter Bala, Oct 14 2015
MATHEMATICA
Table[4 Binomial[10 n + 8, n]/(5 n + 4), {n, 0, 30}]
PROG
(PARI) a(n) = 4*binomial(10*n+8, n)/(5*n+4);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(5/4))^8+x*O(x^n)); polcoeff(B, n)}
(Magma) [4*Binomial(10*n+8, n)/(5*n+4): n in [0..30]];
KEYWORD
nonn,easy
AUTHOR
Tim Fulford, Dec 28 2013
STATUS
approved
G.f. satisfies: A(x) = (1 + x*A(x)^(3/2))^4.
+10
12
1, 4, 30, 280, 2925, 32736, 383838, 4654320, 57887550, 734405100, 9467075926, 123648163392, 1632743088275, 21761329287600, 292362576381900, 3955219615609056, 53834425161872586, 736687428853685400, 10129401435828605700, 139876690363085200200
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(p*n + r, n)/(p*n + r); this is the case p = 6, r = 4. The o.g.f. B(x) of the Fuss_catalan sequence a(n,p,r) satisfies B(x) = {1 + x*B(x)^(p/r)}^r. - Peter Bala, Oct 14 2015
FORMULA
a(n) = 4*binomial(6*n+4,n)/(6*n+4).
G.f. A(x) = G(x)^4 where G(x) = 1 + x*G(x)^6 is the g.f. of A002295.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^4), where C(x) is the o.g.f. for the Catalan numbers A000108. - Peter Bala, Oct 14 2015
EXAMPLE
G.f.: A(x) = 1 + 4*x + 30*x^2 + 280*x^3 + 2925*x^4 + 32736*x^5 +...
Related expansions:
A(x)^(3/2) = 1 + 6*x + 51*x^2 + 506*x^3 + 5481*x^4 +...+ A002295(n+1)*x^n +...
A(x)^(1/4) = 1 + x + 6*x^2 + 51*x^3 + 506*x^4 +...+ A002295(n)*x^n +...
MATHEMATICA
m = 20; A[_] = 0;
Do[A[x_] = (1 + x*A[x]^(3/2))^4 + O[x]^m, {m}];
CoefficientList[A[x], x] (* Jean-François Alcover, Oct 20 2019 *)
PROG
(PARI) {a(n)=binomial(6*n+4, n) * 4/(6*n+4)}
for(n=0, 40, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+4*x); for(i=1, n, A=(1+x*A^(3/2))^4+x*O(x^n)); polcoeff(A, n)}
KEYWORD
nonn,easy
AUTHOR
Paul D. Hanna, Apr 29 2012
STATUS
approved
8*binomial(9*n+8,n)/(9*n+8).
+10
12
1, 8, 100, 1496, 24682, 433160, 7932196, 149846840, 2898753715, 57135036024, 1143315429776, 23166186450680, 474347963242860, 9799792252101016, 204022381037886400, 4276098770070159096, 90151561242584838605, 1910564646571462338800
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=9, r=8.
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7.
Elżbieta Liszewska, Wojciech Młotkowski, Some relatives of the Catalan sequence, arXiv:1907.10725 [math.CO], 2019.
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=8.
From Wolfdieter Lang, Feb 06 2020: (Start)
G.f.: hypergeom([8, 9, ..., 16]/9, [9, 10, ..., 16]/8, (9^9/8^8)*x).
E,g,f.: hypergeom([8, 10, 11, ..., 16]/9, [9, 10,..., 16]/8, (9^9/8^8)*x). Cf. _Ilya Gutkovsky_ in A118971. (End)
D-finite with recurrence 128*(8*n+3)*(4*n+3)*(8*n+1)*(2*n+1)*(8*n+7)*(4*n+1)*(8*n+5)*(n+1)*a(n) -81*(9*n+2)*(9*n+4)*(3*n+2)*(9*n-1)*(9*n+1)*(3*n+1)*(9*n+5)*(9*n+7)*a(n-1)=0. - R. J. Mathar, Aug 01 2022
From Wolfdieter Lang, Feb 15 2024: (Start)
a(n) = binomial(9*n+7, n+1)/(8*n+7), which is instance k = 8 of c(k, n+1) given in A130564.
The g.f. given above, and called B in the first line above, satisfies B(x)*(1 - x*B(x))^8 = 1. For the analog proof of the equivalence see A234466. x*B(x) is the compositional inverse of y*(1 - y)^8.
Another formula for the g.f. is B(x) = (8/(9*x))*(1 - 8F7([-1,1,2,3,4,5,6.7]/9, [1,2,3,4,5,6.7]/8; (9^9/8^8)*x)). (End)
MATHEMATICA
Table[8 Binomial[9 n + 8, n]/(9 n + 8), {n, 0, 30}] (* Vincenzo Librandi, Dec 28 2013 *)
PROG
(PARI) a(n) = 8*binomial(9*n+8, n)/(9*n+8);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/8))^8+x*O(x^n)); polcoeff(B, n)}
(Magma) [8*Binomial(9*n+8, n)/(9*n+8): n in [0..30]]; // Vincenzo Librandi, Dec 28 2013
KEYWORD
nonn,easy
AUTHOR
Tim Fulford, Dec 27 2013
STATUS
approved
a(n) = 5*binomial(7*n+5,n)/(7*n+5).
+10
10
1, 5, 45, 500, 6200, 82251, 1142295, 16398200, 241379325, 3623534200, 55262073757, 853814730600, 13335836817420, 210225027967325, 3340362288091500, 53443628421286320, 860246972339613855, 13921016318025200505, 226352372251889455000, 3696160728052814340000
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), this is the case p = 7, r = 5.
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
FORMULA
G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 7, r = 5.
O.g.f. A(x) = 1/x * series reversion (x/C(x)^5), where C(x) is the o.g.f. for the Catalan numbers A000108. A(x)^(1/5) is the o.g.f. for A002296. - Peter Bala, Oct 14 2015
MATHEMATICA
Table[5 Binomial[7 n + 5, n]/(7 n + 5), {n, 0, 30}]
PROG
(PARI) a(n) = 5*binomial(7*n+5, n)/(7*n+5);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(7/5))^5+x*O(x^n)); polcoeff(B, n)}
(Magma) [5*Binomial(7*n+5, n)/(7*n+5): n in [0..30]];
KEYWORD
nonn,easy
AUTHOR
Tim Fulford, Dec 16 2013
STATUS
approved
a(n) = 2*binomial(9*n+2,n)/(9*n+2).
+10
9
1, 2, 19, 252, 3885, 65274, 1159587, 21421248, 407337153, 7920326700, 156753610013, 3147328992080, 63951322669065, 1312575792628356, 27172514322677625, 566707337222428800, 11896007334177739113, 251142622845893276190, 5328891499524964282170
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=9, r=2.
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906 [math.CO], 2007; Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
Sheng-liang Yang and Mei-yang Jiang, Pattern avoiding problems on the hybrid d-trees, J. Lanzhou Univ. Tech., (China, 2023) Vol. 49, No. 2, 144-150. (in Mandarin)
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=2.
a(n) = 2*binomial(9n+1,n-1)/n for n>0, a(0)=1. [Bruno Berselli, Jan 19 2014]
MATHEMATICA
Table[2 Binomial[9 n + 2, n]/(9 n + 2), {n, 0, 30}]
PROG
(PARI) a(n) = 2*binomial(9*n+2, n)/(9*n+2);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/2))^2+x*O(x^n)); polcoeff(B, n)}
(Magma) [2*Binomial(9*n+2, n)/(9*n+2): n in [0..30]];
KEYWORD
nonn
AUTHOR
Tim Fulford, Dec 27 2013
STATUS
approved
a(n) = binomial(9*n+3, n)/(3*n+1).
+10
8
1, 3, 30, 406, 6327, 107019, 1909908, 35399520, 674842149, 13147742322, 260626484118, 5239783981320, 106585537781775, 2189670831627678, 45366284782209600, 946815917066740800, 19887218367823853937, 420076689292591271325, 8917736795123409615060, 190161017612160607167948, 4071301730663135449185705
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r, n)/(n*p + r), where p=9, r=3.
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=3.
MATHEMATICA
Table[Binomial[9n+3, n]/(3n+1), {n, 0, 30}]
PROG
(PARI) a(n) = binomial(9*n+3, n)/(3*n+1);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^3)^3+x*O(x^n)); polcoeff(B, n)}
(Magma) [Binomial(9*n+3, n)/(3*n+1): n in [0..30]];
(Sage) [binomial(9*n+3, n)/(3*n+1) for n in (0..30)] # G. C. Greubel, Feb 09 2021
KEYWORD
nonn
AUTHOR
Tim Fulford, Dec 27 2013
STATUS
approved
4*binomial(9*n+4,n)/(9*n+4).
+10
8
1, 4, 42, 580, 9139, 155664, 2791404, 51919296, 992414925, 19375620264, 384734333698, 7745767624560, 157746595917027, 3243956787596560, 67267249849483200, 1404952651131292800, 29529506061314207361, 624113938377564174540, 13256095235994257535900, 282803564653982441429256, 6057302574889055180495805
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=9, r=4.
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=4.
MATHEMATICA
Table[4 Binomial[9 n + 4, n]/(9 n + 4), {n, 0, 30}]
PROG
(PARI) a(n) = 4*binomial(9*n+4, n)/(9*n+4);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/1))^1+x*O(x^n)); polcoeff(B, n)}
(Magma) [1*Binomial(9*n+1, n)/(9*n+1): n in [0..30]];
KEYWORD
nonn
AUTHOR
Tim Fulford, Dec 27 2013
STATUS
approved
5*binomial(9*n+5,n)/(9*n+5).
+10
8
1, 5, 55, 775, 12350, 211876, 3818430, 71282640, 1366368375, 26735839650, 531838637759, 10723307329700, 218658647805780, 4501362056183300, 93426735902060000, 1952884185072496992, 41074876852203972645, 868669222741822476975, 18460669540059117038250, 394033629095915025876750, 8443512680148379948569910
OFFSET
0,2
COMMENTS
Fuss-Catalan sequence is a(n,p,r) = r*binomial(np+r,n)/(np+r), where p=9, r=5.
LINKS
J-C. Aval, Multivariate Fuss-Catalan Numbers, arXiv:0711.0906v1, Discrete Math., 308 (2008), 4660-4669.
Thomas A. Dowling, Catalan Numbers Chapter 7
Wojciech Mlotkowski, Fuss-Catalan Numbers in Noncommutative Probability, Docum. Mathm. 15: 939-955.
FORMULA
G.f. satisfies: B(x) = {1 + x*B(x)^(p/r)}^r, where p=9, r=5.
MATHEMATICA
Table[5 Binomial[9 n + 5, n]/(9 n + 5), {n, 0, 30}]
PROG
(PARI) a(n) = 5*binomial(9*n+5, n)/(9*n+5);
(PARI) {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(9/5))^5+x*O(x^n)); polcoeff(B, n)}
(Magma) [5*Binomial(9*n+5, n)/(9*n+5): n in [0..30]];
KEYWORD
nonn
AUTHOR
Tim Fulford, Dec 27 2013
STATUS
approved

Search completed in 0.009 seconds