OFFSET
0,3
COMMENTS
Shifts left when convolved three times.
From Wolfdieter Lang, Sep 14 2007: (Start)
a(n), n >= 1, enumerates octic (8-ary) trees (rooted, ordered, incomplete) with n vertices (including the root).
Pfaff-Fuss-Catalan sequence C^{m}_n for m = 8. See the Graham et al. reference, p. 347. eq. 7.66. See also the Pólya-Szegő reference.
Also 8-Raney sequence. See the Graham et al. reference, p. 346-7.
(End)
This is instance k = 8 of the generalized Catalan family {C(k, n)}_{n>=0} given in a comment of A130564. - Wolfdieter Lang, Feb 05 2024
REFERENCES
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, pp. 200, 347.
G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, Heidelberg, New York, 2 vols., 1972, Vol. 1, problem 211, p. 146 with solution on p. 348.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..750
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv:math/0205301 [math.CO], 2002]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 290
Lajos Takács, Enumeration of rooted trees and forests, Math. Scientist 18 (1993), 1-10, esp. Eq. (5).
FORMULA
a(n) = binomial(8*n, n)/(7*n+1) = binomial(8*n+1, n)/(8*n+1) = A062993(n+6,6).
O.g.f.: A(x) = 1 + x*A(x)^8 = 1/(1-x*A(x)^7).
a(0) = 1; a(n) = Sum_{i1 + i2 + .. i8 = n - 1} a(i1)*a(i2)*...*a(i8) for n >= 1. - Robert FERREOL, Apr 01 2015
a(n) = binomial(8*n, n - 1)/n for n >= 1, a(0) = 1 (from the Lagrange series of the o.g.f. A(x) with its above given implicit equation).
From Karol A. Penson, Mar 26 2015: (Start)
In Maple notation,
e.g.f.: hypergeom([1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8], [2/7, 3/7, 4/7, 5/7, 6/7, 1, 8/7],(2^24/7^7)*z);
o.g.f.: hypergeom([1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8], [2/7, 3/7, 4/7, 5/7, 6/7, 8/7],(2^24/7^7)*z);
a(n) are special values of Jacobi polynomials, in Maple notation:
a(n) = JacobiP(n - 1, 7*n + 1, -n, 1)/n, n = 1, 2, ...
(End)
From Peter Bala, Oct 14 2015: (Start)
A(x)^9 is o.g.f. for A234467. (End)
a(n) ~ 2^(24*n + 1)/(sqrt(Pi)*7^(7*n + 3/2)*n^(3/2)). - Ilya Gutkovskiy, Feb 07 2017
D-finite with recurrence: 7*n*(7*n-3)*(7*n+1)*(7*n-2)*(7*n-5)*(7*n-1)*(7*n-4)*a(n) -128*(8*n-5)*(4*n-1)*(8*n-7)*(2*n-1)*(8*n-1)*(4*n-3)*(8*n-3)*a(n-1)=0. - R. J. Mathar, Feb 20 2020
EXAMPLE
There are a(2) = 8 octic trees (vertex degree less than or equal to 8 and 8 possible branchings) with 2 vertices (one of them the root). Adding one more branch (one more vertex) to these 8 trees yields 8*8 + binomial(8, 2) = 92 = a(3) such trees.
MAPLE
seq(binomial(8*n+1, n)/(8*n+1), n=0..30); # Robert FERREOL, Apr 01 2015
n:=30: G:=series(RootOf(g = 1+x*g^8, g), x=0, n+1): seq(coeff(G, x, k), k=0..n); # Robert FERREOL, Apr 01 2015
MATHEMATICA
Table[Binomial[8n, n]/(7n + 1), {n, 0, 20}] (* Harvey P. Dale, Dec 24 2012 *)
PROG
(Haskell)
a007556 0 = 1
a007556 n = a007318' (8 * n) (n - 1) `div` n
-- Reinhard Zumkeller, Jul 30 2013
(Magma) [Binomial(8*n, n)/(7*n+1): n in [0..20]]; // Vincenzo Librandi, Apr 02 2015
(PARI) vector(100, n, n--; binomial(8*n, n)/(7*n+1)) \\ Altug Alkan, Oct 14 2015
CROSSREFS
KEYWORD
nonn,nice,eigen
AUTHOR
STATUS
approved