[go: up one dir, main page]

login
Search: a229057 -id:a229057
     Sort: relevance | references | number | modified | created      Format: long | short | data
First occurrence of n as a term in the continued fraction for zeta(3).
+10
3
1, 12, 25, 2, 64, 27, 17, 140, 10, 119, 21, 239, 175, 78, 181, 46, 200, 4, 83, 619, 753, 412, 177, 197, 414, 138, 146, 561, 233, 29, 2276, 1549, 660, 889, 298, 1040, 2279, 322, 1274, 1882, 345, 2926, 673, 254, 1961, 1542, 1681, 296, 5423, 2423, 2557, 228
OFFSET
1,2
COMMENTS
Incorrectly indexed version of A229057.
LINKS
FORMULA
a(n) = 1 + A229057(n).
MATHEMATICA
With[{cfz3 = ContinuedFraction[Zeta[3], 6000]}, Flatten[Table[Position[cfz3, n, 1, 1], {n, 60}]]] (* Harvey P. Dale, Nov 11 2012 *)
PROG
(PARI) /* 1500 precision digits */ v=contfrac(zeta(3)); a(n)=if(n<0, 0, s=1; while(abs(n-component(v, s))>0, s++); s)
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Randall L Rathbun, Feb 03 2002
STATUS
approved
Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.
+10
1
1, 0, 1, -1, 2, -1, 1, 1, 0, -2, 3, 1, -4, 3, 1, 1, -2, -2, 4, 0, 3, -9, 6, 1, -1, 6, -9, 0, 5, -1, 3, 3, -15, 10, 1, 0, -4, 18, -24, 5, 6, 1, -8, 18, -6, -20, 15, 1, 1, -4, -4, 36, -49, 14, 7, 0, 5, -30, 60, -35, -21, 21, 1, -1, 10, -30, 20, 50, -84, 28, 8
OFFSET
0,5
COMMENTS
The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = 1 + (x - 1)/f(n-1,x), where f(0,x) = 1.
Every row sum is 1. The first column is purely periodic with period (1,0,-1,-1,0,1).
Conjecture: for n > 2, p(n,x) is irreducible if and only if n is a (prime - 2). More generally, if c is arbitrary and f(n,x) = 1 + (x + c)/f(n-1,x), where f(x,0) = 1, then p(n,x) is irreducible if and only if n is a (prime - 2).
LINKS
Clark Kimberling, Rows 0..100, flattened
EXAMPLE
f(0,x) = 1/1, so that p(0,x) = 1
f(1,x) = x/1, so that p(1,x) = x;
f(2,x) = (-1 + 2 x)/x, so that p(2,x) = -1 + 2 x.
First 6 rows of the triangle of coefficients:
... 1
... 0 ... 1
.. -1 ... 2
.. -1 ... 1 ... 1
... 0 .. -2 ... 3
... 1 .. -4 ... 3 ... 1
MATHEMATICA
z = 20; f[n_, x_] := 1 + (x - 1)/f[n - 1, x]; f[0, x_] = 1;
t = Table[Factor[f[n, x]], {n, 0, z}]
u = Numerator[t]
TableForm[Rest[Table[CoefficientList[u[[n]], x], {n, 0, z}]]] (* A249303 array *)
v = Flatten[CoefficientList[u, x]] (* A249303 *)
CROSSREFS
KEYWORD
tabf,sign,easy
AUTHOR
Clark Kimberling, Oct 24 2014
STATUS
approved

Search completed in 0.005 seconds