[go: up one dir, main page]

login
First occurrence of n as a term in the continued fraction for zeta(3).
3

%I #31 Aug 20 2024 15:27:34

%S 1,12,25,2,64,27,17,140,10,119,21,239,175,78,181,46,200,4,83,619,753,

%T 412,177,197,414,138,146,561,233,29,2276,1549,660,889,298,1040,2279,

%U 322,1274,1882,345,2926,673,254,1961,1542,1681,296,5423,2423,2557,228

%N First occurrence of n as a term in the continued fraction for zeta(3).

%C Incorrectly indexed version of A229057.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/AperysConstantContinuedFraction.html">Apery's Constant Continued Fraction</a>

%F a(n) = 1 + A229057(n).

%t With[{cfz3 = ContinuedFraction[Zeta[3], 6000]}, Flatten[Table[Position[cfz3, n, 1, 1], {n, 60}]]] (* _Harvey P. Dale_, Nov 11 2012 *)

%o (PARI) /* 1500 precision digits */ v=contfrac(zeta(3)); a(n)=if(n<0,0,s=1; while(abs(n-component(v,s))>0,s++); s)

%Y Cf. A013631, A032523, A229057.

%K nonn

%O 1,2

%A _N. J. A. Sloane_

%E More terms from _Randall L Rathbun_, Feb 03 2002