[go: up one dir, main page]

login
Search: a225688 -id:a225688
     Sort: relevance | references | number | modified | created      Format: long | short | data
E.g.f.: sec(x)^2*tan(x)+sec(x)*tan(x)^2.
+10
6
0, 1, 2, 8, 28, 136, 662, 3968, 24568, 176896, 1326122, 11184128, 98329108, 951878656, 9596075582, 104932671488, 1192744081648, 14544442556416, 183983154281042, 2475749026562048, 34489251602450188, 507711943253426176, 7722592644581974502, 123460740095103991808, 2035778987564783402728
OFFSET
0,3
COMMENTS
Number of up-down max-min permutations of n elements.
LINKS
F. Heneghan and T. K. Petersen, Power series for up-down min-max permutations, 2013.
Masato Kobayashi, A new refinement of Euler numbers on counting alternating permutations, arXiv:1908.00701 [math.CO], 2019.
FORMULA
The e.g.f. can also be written as sin(x)*(1+sin(x))/cos(x)^3.
A225688(n)+a(n) = A000111(n+2). - corrected by Vaclav Kotesovec, May 26 2013
a(n) ~ n! * n^2*(2/Pi)^(n+3). - Vaclav Kotesovec, May 26 2013
MATHEMATICA
Table[n!*SeriesCoefficient[Sin[x]*(1+Sin[x])/Cos[x]^3, {x, 0, n}] , {n, 0, 20}] (* Vaclav Kotesovec, May 26 2013 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 26 2013
STATUS
approved
a(n) = n! * [x^n] 2*(tan(x))^2*(sec(x) + tan(x)).
+10
1
0, 0, 4, 12, 56, 240, 1324, 7392, 49136, 337920, 2652244, 21660672, 196658216, 1859020800, 19192151164, 206057828352, 2385488163296, 28669154426880, 367966308562084, 4893320282898432, 68978503204900376, 1005520890400604160, 15445185289163949004, 244890632417194278912
OFFSET
0,3
FORMULA
a(n-2) = |{up-down 2nd-max-upper permutations in S_n}| for n >= 2 (see Definition 3.4 in Kobayashi).
a(0) = 0 and a(n) = 2*A000142(n)*Sum_{i,j,k>=0, (2*i+1)+(2*j+1)+k=n} A000111(2*i+1)*A000111(2*j+1)*A000111(k)/(A000142(2*i+1)*A000142(2*j+1)*A000142(k)) for n > 0 (see Lemma 3.6 in Kobayashi).
a(2*n) = 2*A225689(2*n) (see Lemma 4.2 in Kobayashi).
a(n) ~ n! * 2^(n+4) * n^2 / Pi^(n+3). - Vaclav Kotesovec, Aug 12 2019
MAPLE
gf := (2*sin(x)*tan(x))/(1 - sin(x)): ser := series(gf, x, 25):
seq(n!*coeff(ser, x, n), n=0..23); # Peter Luschny, Aug 19 2019
MATHEMATICA
CoefficientList[Series[2Tan[x]^2(Sec[x]+Tan[x]), {x, 0, 23}], x]*Table[n!, {n, 0, 23}]
PROG
(PARI) my(x='x+O('x^30)); concat([0, 0], Vec(serlaplace(2*(tan(x))^2*(1/cos(x) + tan(x))))) \\ Michel Marcus, Aug 13 2019
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Aug 12 2019
STATUS
approved
Expansion of e.g.f.: sec(x) + 2*tan(x).
+10
0
1, 2, 1, 4, 5, 32, 61, 544, 1385, 15872, 50521, 707584, 2702765, 44736512, 199360981, 3807514624, 19391512145, 419730685952, 2404879675441, 58177770225664, 370371188237525, 9902996106248192, 69348874393137901, 2030847773013704704, 15514534163557086905, 493842960380415967232
OFFSET
0,2
LINKS
F. Heneghan and T. K. Petersen, Power series for up-down min-max permutations, 2013.
Masato Kobayashi, A new refinement of Euler numbers on counting alternating permutations, arXiv:1908.00701 [math.CO], 2019.
FORMULA
a(n-2) = |{up-down 2nd-max-lower permutations in S_n}| for n >= 2 (see Definition 3.4 in Kobayashi).
a(n) = A000111(n+2) - A164575(n) (See Definition 3.4 in Kobayashi).
a(n) = A225688(n) + A225689(n) - A164575(n) (See Heneghan-Petersen and Kobayashi articles).
a(2*n) = A000111(2*n) (See Lemma 3.8 in Kobayashi).
a(2*n+1) = 2*A000111(2*n+1) (See Lemma 3.8 in Kobayashi).
MATHEMATICA
CoefficientList[Series[Sec[x]+2Tan[x], {x, 0, 25}], x]*Table[n!, {n, 0, 25}]
PROG
(PARI) my(x='x+O('x^30)); Vec(serlaplace(1/cos(x)+2*tan(x))) \\ Michel Marcus, Aug 20 2019
KEYWORD
nonn,easy
AUTHOR
Stefano Spezia, Aug 20 2019
STATUS
approved

Search completed in 0.005 seconds