[go: up one dir, main page]

login
Search: a218728 -id:a218728
     Sort: relevance | references | number | modified | created      Format: long | short | data
Powers of 25.
+10
31
1, 25, 625, 15625, 390625, 9765625, 244140625, 6103515625, 152587890625, 3814697265625, 95367431640625, 2384185791015625, 59604644775390625, 1490116119384765625, 37252902984619140625, 931322574615478515625, 23283064365386962890625, 582076609134674072265625, 14551915228366851806640625, 363797880709171295166015625, 9094947017729282379150390625
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 25), L(1, 25), P(1, 25), T(1, 25). Essentially same as Pisot sequences E(25, 625), L(25, 625), P(25, 625), T(25, 625). See A008776 for definitions of Pisot sequences.
A000005(a(n)) = A005408(n+1). - Reinhard Zumkeller, Mar 04 2007
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 25-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
FORMULA
G.f.: 1/(1-25*x). - Philippe Deléham, Nov 23 2008
E.g.f.: exp(25*x). - Zerinvary Lajos, Apr 29 2009
a(n) = 25^n; a(n) = 25*a(n-1), n > 0; a(0)=1. - Vincenzo Librandi, Nov 21 2010
a(n) = A000351(2n) = 5^(2n). - M. F. Hasler, Sep 02 2021
MATHEMATICA
25^Range[0, 20] (* or *) NestList[25#&, 1, 20] (* Harvey P. Dale, Dec 12 2016 *)
PROG
(Sage) [lucas_number1(n, 25, 0) for n in range(1, 17)] # Zerinvary Lajos, Apr 29 2009
(Magma) [25^n: n in [0..100]] // Vincenzo Librandi, Nov 21 2010
(PARI) a(n)=25^n \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Bisection of A000351 (powers of 5).
Cf. A218728 (partial sums).
KEYWORD
nonn,easy
STATUS
approved
Triangle read by rows: T(n,k) = value of the n-th repunit in base (k+1) representation, 1<=k<=n.
+10
15
1, 3, 4, 7, 13, 21, 15, 40, 85, 156, 31, 121, 341, 781, 1555, 63, 364, 1365, 3906, 9331, 19608, 127, 1093, 5461, 19531, 55987, 137257, 299593, 255, 3280, 21845, 97656, 335923, 960800, 2396745, 5380840, 511, 9841, 87381, 488281, 2015539, 6725601, 19173961, 48427561, 111111111
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Repunit
FORMULA
T(n, k) = Sum_{i=0..n-1} (k+1)^i.
T(n+1, k) = (k+1)*T(n, k) + 1.
Sum_{k=1..n} T(n, k) = A125120(n).
T(2*n-1, n) = A125119(n).
T(n, 1) = A000225(n).
T(n, 2) = A003462(n) for n>1.
T(n, 3) = A002450(n) for n>2.
T(n, 4) = A003463(n) for n>3.
T(n, 5) = A003464(n) for n>4.
T(n, 9) = A002275(n) for n>8.
T(n, n) = A060072(n+1).
T(n, n-1) = A023037(n) for n>1.
T(n, n-2) = A031973(n) for n>2.
T(n, k) = A055129(n, k+1) = A104878(n+k, k+1), 1<=k<=n. - Mathew Englander, Dec 19 2020
EXAMPLE
First 4 rows:
1: [1]_2
2: [11]_2 ........ [11]_3
3: [111]_2 ....... [111]_3 ....... [111]_4
4: [1111]_2 ...... [1111]_3 ...... [1111]_4 ...... [1111]_5
_
1: 1
2: 2+1 ........... 3+1
3: (2+1)*2+1 ..... (3+1)*3+1 ..... (4+1)*4+1
4: ((2+1)*2+1)*2+1 ((3+1)*3+1)*3+1 ((4+1)*4+1)*4+1 ((5+1)*5+1)*5+1.
MATHEMATICA
Table[((k+1)^n -1)/k, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Aug 15 2022 *)
PROG
(Magma) [((k+1)^n -1)/k : k in [1..n], n in [1..12]]; // G. C. Greubel, Aug 15 2022
(SageMath)
def A125118(n, k): return ((k+1)^n -1)/k
flatten([[A125118(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Aug 15 2022
CROSSREFS
This triangle shares some features with triangle A104878.
This triangle is a portion of rectangle A055129.
Each term of A110737 comes from the corresponding row of this triangle.
Diagonals (adjusting offset as necessary): A060072, A023037, A031973, A173468.
Cf. A023037, A031973, A125119, A125120 (row sums).
KEYWORD
nonn,tabl,base
AUTHOR
Reinhard Zumkeller, Nov 21 2006
STATUS
approved
A sum-of-powers number triangle.
+10
13
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 15, 13, 5, 1, 1, 6, 31, 40, 21, 6, 1, 1, 7, 63, 121, 85, 31, 7, 1, 1, 8, 127, 364, 341, 156, 43, 8, 1, 1, 9, 255, 1093, 1365, 781, 259, 57, 9, 1, 1, 10, 511, 3280, 5461, 3906, 1555, 400, 73, 10, 1, 1, 11, 1023, 9841, 21845
OFFSET
0,5
COMMENTS
Columns are partial sums of the columns of A004248. Row sums are A104879. Diagonal sums are A104880.
The rows of this triangle (apart from the initial "1" in each row) are the antidiagonals of rectangle A055129. The diagonals of this triangle (apart from the initial "1") are the rows of rectangle A055129. The columns of this triangle (apart from the leftmost column) are the same as the columns of rectangle A055129 but shifted downward. - Mathew Englander, Dec 21 2020
FORMULA
T(n, k) = if(k=1, n, if(k<=n, (k^(n-k+1)-1)/(k-1), 0));
G.f. of column k: x^k/((1-x)(1-k*x)). [corrected by Werner Schulte, Jun 05 2019]
T(n, k) = A069777(n+1,k)/A069777(n,k). [Johannes W. Meijer, Aug 21 2011]
T(n, k) = A055129(n+1-k, k) for n >= k > 0. - Mathew Englander, Dec 19 2020
EXAMPLE
Triangle starts:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 7, 4, 1;
1, 5, 15, 13, 5, 1;
1, 6, 31, 40, 21, 6, 1;
...
MAPLE
A104878 :=proc(n, k): if k = 0 then 1 elif k=1 then n elif k>=2 then (k^(n-k+1)-1)/(k-1) fi: end: for n from 0 to 7 do seq(A104878(n, k), k=0..n) od; seq(seq(A104878(n, k), k=0..n), n=0..10); # Johannes W. Meijer, Aug 21 2011
CROSSREFS
Cf. A004248 (first differences by column), A104879 (row sums), A104880 (antidiagonal sums), A125118 (version of this triangle with fewer terms).
This triangle (ignoring the leftmost column) is a rotation of rectangle A055129.
T(2n,n) gives A031973.
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Mar 28 2005
STATUS
approved
Array t(n,k) of sum of successive even powers of primes, where t(n,k) = sum_(j=0..k-1) prime(n)^(2j), with n>=1 and k>=0, read by ascending antidiagonals.
+10
0
0, 0, 1, 0, 1, 5, 0, 1, 10, 21, 0, 1, 26, 91, 85, 0, 1, 50, 651, 820, 341, 0, 1, 122, 2451, 16276, 7381, 1365, 0, 1, 170, 14763, 120100, 406901, 66430, 5461, 0, 1, 290, 28731, 1786324, 5884901, 10172526, 597871, 21845, 0, 1, 362, 83811, 4855540, 216145205, 288360150, 254313151, 5380840, 87381
OFFSET
1,6
COMMENTS
Conjecture: any term, except 0 and 1, is never a square.
Row n=1 is A002450,
row n=2 is A002452,
row n=3 is A218728,
row n=4 is A218753,
rows n>=5 are not in the OEIS,
column k=2 is A066872,
columns k>=3 are not in the OEIS.
FORMULA
t(n,k) = ((prime(n)^2)^k-1)/(prime(n)^2-1).
EXAMPLE
Array begins:
0, 1, 5, 21, 85, 341, 1365, ...
0, 1, 10, 91, 820, 7381, 66430, ...
0, 1, 26, 651, 16276, 406901, 10172526, ...
0, 1, 50, 2451, 120100, 5884901, 288360150, ...
0, 1, 122, 14763, 1786324, 216145205, 26153569806, ...
etc.
MATHEMATICA
t[n_, k_] := ((Prime[n]^2)^k-1)/(Prime[n]^2-1); Table[t[n-k+1, k], {n, 0, 10}, {k, 0, n}] // Flatten
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved

Search completed in 0.007 seconds