Displaying 1-4 of 4 results found.
page
1
1, 25, 625, 15625, 390625, 9765625, 244140625, 6103515625, 152587890625, 3814697265625, 95367431640625, 2384185791015625, 59604644775390625, 1490116119384765625, 37252902984619140625, 931322574615478515625, 23283064365386962890625, 582076609134674072265625, 14551915228366851806640625, 363797880709171295166015625, 9094947017729282379150390625
COMMENTS
Same as Pisot sequences E(1, 25), L(1, 25), P(1, 25), T(1, 25). Essentially same as Pisot sequences E(25, 625), L(25, 625), P(25, 625), T(25, 625). See A008776 for definitions of Pisot sequences.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 25-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
MATHEMATICA
25^Range[0, 20] (* or *) NestList[25#&, 1, 20] (* Harvey P. Dale, Dec 12 2016 *)
PROG
(Sage) [lucas_number1(n, 25, 0) for n in range(1, 17)] # Zerinvary Lajos, Apr 29 2009
CROSSREFS
Bisection of A000351 (powers of 5).
Triangle read by rows: T(n,k) = value of the n-th repunit in base (k+1) representation, 1<=k<=n.
+10
15
1, 3, 4, 7, 13, 21, 15, 40, 85, 156, 31, 121, 341, 781, 1555, 63, 364, 1365, 3906, 9331, 19608, 127, 1093, 5461, 19531, 55987, 137257, 299593, 255, 3280, 21845, 97656, 335923, 960800, 2396745, 5380840, 511, 9841, 87381, 488281, 2015539, 6725601, 19173961, 48427561, 111111111
LINKS
Eric Weisstein's World of Mathematics, Repunit
FORMULA
T(n, k) = Sum_{i=0..n-1} (k+1)^i.
T(n+1, k) = (k+1)*T(n, k) + 1.
EXAMPLE
First 4 rows:
1: [1]_2
2: [11]_2 ........ [11]_3
3: [111]_2 ....... [111]_3 ....... [111]_4
4: [1111]_2 ...... [1111]_3 ...... [1111]_4 ...... [1111]_5
_
1: 1
2: 2+1 ........... 3+1
3: (2+1)*2+1 ..... (3+1)*3+1 ..... (4+1)*4+1
4: ((2+1)*2+1)*2+1 ((3+1)*3+1)*3+1 ((4+1)*4+1)*4+1 ((5+1)*5+1)*5+1.
MATHEMATICA
Table[((k+1)^n -1)/k, {n, 12}, {k, n}]//Flatten (* G. C. Greubel, Aug 15 2022 *)
PROG
(Magma) [((k+1)^n -1)/k : k in [1..n], n in [1..12]]; // G. C. Greubel, Aug 15 2022
(SageMath)
def A125118(n, k): return ((k+1)^n -1)/k
CROSSREFS
This triangle shares some features with triangle A104878.
This triangle is a portion of rectangle A055129.
Each term of A110737 comes from the corresponding row of this triangle.
Columns (adjusting offset as necessary): A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125, A091030, A135519, A135518, A131865, A091045, A218721, A218722, A064108, A218724, A218725, A218726, A218727, A218728, A218729, A218730, A218731, A218732, A218733, A218734, A132469, A218736, A218737, A218738, A218739, A218740, A218741, A218742, A218743, A218744, A218745, A218746, A218747, A218748, A218749, A218750, A218751, A218753, A218752.
A sum-of-powers number triangle.
+10
13
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 7, 4, 1, 1, 5, 15, 13, 5, 1, 1, 6, 31, 40, 21, 6, 1, 1, 7, 63, 121, 85, 31, 7, 1, 1, 8, 127, 364, 341, 156, 43, 8, 1, 1, 9, 255, 1093, 1365, 781, 259, 57, 9, 1, 1, 10, 511, 3280, 5461, 3906, 1555, 400, 73, 10, 1, 1, 11, 1023, 9841, 21845
COMMENTS
The rows of this triangle (apart from the initial "1" in each row) are the antidiagonals of rectangle A055129. The diagonals of this triangle (apart from the initial "1") are the rows of rectangle A055129. The columns of this triangle (apart from the leftmost column) are the same as the columns of rectangle A055129 but shifted downward. - Mathew Englander, Dec 21 2020
FORMULA
T(n, k) = if(k=1, n, if(k<=n, (k^(n-k+1)-1)/(k-1), 0));
G.f. of column k: x^k/((1-x)(1-k*x)). [corrected by Werner Schulte, Jun 05 2019]
EXAMPLE
Triangle starts:
1;
1, 1;
1, 2, 1;
1, 3, 3, 1;
1, 4, 7, 4, 1;
1, 5, 15, 13, 5, 1;
1, 6, 31, 40, 21, 6, 1;
...
MAPLE
A104878 :=proc(n, k): if k = 0 then 1 elif k=1 then n elif k>=2 then (k^(n-k+1)-1)/(k-1) fi: end: for n from 0 to 7 do seq( A104878(n, k), k=0..n) od; seq(seq( A104878(n, k), k=0..n), n=0..10); # Johannes W. Meijer, Aug 21 2011
CROSSREFS
Cf. A004248 (first differences by column), A104879 (row sums), A104880 (antidiagonal sums), A125118 (version of this triangle with fewer terms).
This triangle (ignoring the leftmost column) is a rotation of rectangle A055129.
Columns (adjusting offset as necessary): A000012, A000027, A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125, A091030, A135519, A135518, A131865, A091045, A218721, A218722, A064108, A218724, A218725, A218726, A218727, A218728, A218729, A218730, A218731, A218732, A218733, A218734, A132469, A218736, A218737, A218738, A218739, A218740, A218741, A218742, A218743, A218744, A218745, A218746, A218747, A218748, A218749, A218750, A218751, A218753, A218752.
Array t(n,k) of sum of successive even powers of primes, where t(n,k) = sum_(j=0..k-1) prime(n)^(2j), with n>=1 and k>=0, read by ascending antidiagonals.
+10
0
0, 0, 1, 0, 1, 5, 0, 1, 10, 21, 0, 1, 26, 91, 85, 0, 1, 50, 651, 820, 341, 0, 1, 122, 2451, 16276, 7381, 1365, 0, 1, 170, 14763, 120100, 406901, 66430, 5461, 0, 1, 290, 28731, 1786324, 5884901, 10172526, 597871, 21845, 0, 1, 362, 83811, 4855540, 216145205, 288360150, 254313151, 5380840, 87381
COMMENTS
Conjecture: any term, except 0 and 1, is never a square.
rows n>=5 are not in the OEIS,
columns k>=3 are not in the OEIS.
FORMULA
t(n,k) = ((prime(n)^2)^k-1)/(prime(n)^2-1).
EXAMPLE
Array begins:
0, 1, 5, 21, 85, 341, 1365, ...
0, 1, 10, 91, 820, 7381, 66430, ...
0, 1, 26, 651, 16276, 406901, 10172526, ...
0, 1, 50, 2451, 120100, 5884901, 288360150, ...
0, 1, 122, 14763, 1786324, 216145205, 26153569806, ...
etc.
MATHEMATICA
t[n_, k_] := ((Prime[n]^2)^k-1)/(Prime[n]^2-1); Table[t[n-k+1, k], {n, 0, 10}, {k, 0, n}] // Flatten
Search completed in 0.007 seconds
|