[go: up one dir, main page]

login
A069777
Array of q-factorial numbers n!_q, read by ascending antidiagonals.
19
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 24, 21, 4, 1, 1, 1, 120, 315, 52, 5, 1, 1, 1, 720, 9765, 2080, 105, 6, 1, 1, 1, 5040, 615195, 251680, 8925, 186, 7, 1, 1, 1, 40320, 78129765, 91611520, 3043425, 29016, 301, 8, 1, 1
OFFSET
0,8
LINKS
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
T(n,q) = Product_{k=1..n} (q^k - 1) / (q - 1).
T(n,k) = Product_{n1=k..n-1} A104878(n1,k). - Johannes W. Meijer, Aug 21 2011
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 6, 21, 52, 105, 186, 301, ...
1, 24, 315, 2080, 8925, 29016, 77959, ...
1, 120, 9765, 251680, 3043425, 22661496, 121226245, ...
...
MAPLE
A069777 := proc(n, k) local n1: mul(A104878(n1, k), n1=k..n-1) end: A104878 := proc(n, k): if k = 0 then 1 elif k=1 then n elif k>=2 then (k^(n-k+1)-1)/(k-1) fi: end: seq(seq(A069777(n, k), k=0..n), n=0..9); # Johannes W. Meijer, Aug 21 2011
nmax:=9: T(0, 0):=1: for n from 1 to nmax do T(n, 0):=1: T(n, 1):= (n-1)! od: for q from 2 to nmax do for n from 0 to nmax do T(n+q, q) := product((q^k - 1)/(q - 1), k= 1..n) od: od: for n from 0 to nmax do seq(T(n, k), k=0..n) od; seq(seq(T(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Aug 21 2011
# alternative Maple program:
T:= proc(n, k) option remember; `if`(n<2, 1,
T(n-1, k)*`if`(k=1, n, (k^n-1)/(k-1)))
end:
seq(seq(T(d-k, k), k=0..d), d=0..10); # Alois P. Heinz, Sep 08 2021
MATHEMATICA
(* Returns the rectangular array *) Table[Table[QFactorial[n, q], {q, 0, 6}], {n, 0, 6}] (* Geoffrey Critzer, May 21 2017 *)
PROG
(PARI) T(n, q)=prod(k=1, n, ((q^k - 1) / (q - 1))) \\ Andrew Howroyd, Feb 19 2018
CROSSREFS
Rows n=3..5 are A069778, A069779, A218503.
Main diagonal gives A347611.
Cf. A156173.
Sequence in context: A332700 A256268 A213275 * A225816 A227655 A064992
KEYWORD
easy,nonn,tabl
AUTHOR
EXTENSIONS
Name edited by Michel Marcus, Sep 08 2021
STATUS
approved