OFFSET
0,8
LINKS
Alois P. Heinz, Antidiagonals n = 0..55, flattened
Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
FORMULA
T(n,q) = Product_{k=1..n} (q^k - 1) / (q - 1).
T(n,k) = Product_{n1=k..n-1} A104878(n1,k). - Johannes W. Meijer, Aug 21 2011
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, ...
1, 6, 21, 52, 105, 186, 301, ...
1, 24, 315, 2080, 8925, 29016, 77959, ...
1, 120, 9765, 251680, 3043425, 22661496, 121226245, ...
...
MAPLE
A069777 := proc(n, k) local n1: mul(A104878(n1, k), n1=k..n-1) end: A104878 := proc(n, k): if k = 0 then 1 elif k=1 then n elif k>=2 then (k^(n-k+1)-1)/(k-1) fi: end: seq(seq(A069777(n, k), k=0..n), n=0..9); # Johannes W. Meijer, Aug 21 2011
nmax:=9: T(0, 0):=1: for n from 1 to nmax do T(n, 0):=1: T(n, 1):= (n-1)! od: for q from 2 to nmax do for n from 0 to nmax do T(n+q, q) := product((q^k - 1)/(q - 1), k= 1..n) od: od: for n from 0 to nmax do seq(T(n, k), k=0..n) od; seq(seq(T(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Aug 21 2011
# alternative Maple program:
T:= proc(n, k) option remember; `if`(n<2, 1,
T(n-1, k)*`if`(k=1, n, (k^n-1)/(k-1)))
end:
seq(seq(T(d-k, k), k=0..d), d=0..10); # Alois P. Heinz, Sep 08 2021
MATHEMATICA
(* Returns the rectangular array *) Table[Table[QFactorial[n, q], {q, 0, 6}], {n, 0, 6}] (* Geoffrey Critzer, May 21 2017 *)
PROG
(PARI) T(n, q)=prod(k=1, n, ((q^k - 1) / (q - 1))) \\ Andrew Howroyd, Feb 19 2018
CROSSREFS
KEYWORD
AUTHOR
Franklin T. Adams-Watters, Apr 07 2002
EXTENSIONS
Name edited by Michel Marcus, Sep 08 2021
STATUS
approved