[go: up one dir, main page]

login
Search: a209061 -id:a209061
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) is the smallest number k such that k*n is an exponentially squarefree number (A209061).
+20
5
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 1, 1
OFFSET
1,16
LINKS
FORMULA
Multiplicative with a(p^e) = p^A081221(e).
a(n) = A365684(n)/n.
a(n) >= 1, with equality if and only if n is an exponentially squarefree number (A209061).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 + Sum_{k>=1} (p^f(k) - p^f(k-1))/p^k) = 1.06562841319..., where f(k) = A081221(k) and f(0) = 0.
MATHEMATICA
f[p_, e_] := Module[{k = e}, While[! SquareFreeQ[k], k++]; p^(k-e)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) s(e) = {my(k = e); while(!issquarefree(k), k++); k - e; };
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2])); }
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Sep 15 2023
STATUS
approved
a(n) is the smallest multiple of n that is an exponentially squarefree number (A209061).
+20
4
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 32, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 96, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = p^A067535(e).
a(n) = n*A365685(n).
a(n) >= n, with equality if and only if n is an exponentially squarefree number (A209061).
Sum_{k=1..n} a(k) ~ c*n^2, where c = 0.532814206... = (1/2) * Product_{p prime} (1 + Sum_{k>=1} (p^f(k) - p^(f(k-1)+1))/p^(2*k)), f(k) = A067535(k) and f(0) = 0.
MATHEMATICA
f[p_, e_] := Module[{k = e}, While[! SquareFreeQ[k], k++]; p^k]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) s(e) = {my(k = e); while(!issquarefree(k), k++); k; };
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^s(f[i, 2])); }
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Sep 15 2023
STATUS
approved
Characteristic function of exponentially squarefree numbers (A209061).
+20
1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1
OFFSET
1
LINKS
Jean-Marie De Koninck and William Verreault, On the tower factorization of integers, arXiv:2308.09149 [math.NT], 2023. See page 2.
FORMULA
Multiplicative with a(p^e) = mu(e)^2, where mu is the Möbius function (A008683).
a(n) = 1 if and only if n is in A209061.
a(n) = 0 if and only if n is in A130897.
a(n) = abs(A166234(n)).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = A262276.
MATHEMATICA
f[p_, e_] := MoebiusMu[e]^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = vecprod(apply(x -> moebius(x)^2, factor(n)[, 2]));
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Amiram Eldar, Feb 23 2024
STATUS
approved
Squarefree numbers: numbers that are not divisible by a square greater than 1.
(Formerly M0617)
+10
1751
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113
OFFSET
1,2
COMMENTS
1 together with the numbers that are products of distinct primes.
Also smallest sequence with the property that a(m)*a(k) is never a square for k != m. - Ulrich Schimke (ulrschimke(AT)aol.com), Dec 12 2001
Numbers k such that there is only one Abelian group with k elements, the cyclic group of order k (the numbers such that A000688(k) = 1). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 25 2001
Numbers k such that A007913(k) > phi(k). - Benoit Cloitre, Apr 10 2002
a(n) is the smallest m with exactly n squarefree numbers <= m. - Amarnath Murthy, May 21 2002
k is squarefree <=> k divides prime(k)# where prime(k)# = product of first k prime numbers. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 30 2004
Numbers k such that omega(k) = Omega(k) = A072047(k). - Lekraj Beedassy, Jul 11 2006
The LCM of any finite subset is in this sequence. - Lekraj Beedassy, Jul 11 2006
This sequence and the Beatty Pi^2/6 sequence (A059535) are "incestuous": the first 20000 terms are bounded within (-9, 14). - Ed Pegg Jr, Jul 22 2008
Let us introduce a function D(n) = sigma_0(n)/2^(alpha(1) + ... + alpha(r)), sigma_0(n) number of divisors of n (A000005), prime factorization of n = p(1)^alpha(1) * ... * p(r)^alpha(r), alpha(1) + ... + alpha(r) is sequence (A086436). Function D(n) splits the set of positive integers into subsets, according to the value of D(n). Squarefree numbers (A005117) has D(n)=1, other numbers are "deviated" from the squarefree ideal and have 0 < D(n) < 1. For D(n)=1/2 we have A048109, for D(n)=3/4 we have A067295. - Ctibor O. Zizka, Sep 21 2008
Numbers k such that gcd(k,k')=1 where k' is the arithmetic derivative (A003415) of k. - Giorgio Balzarotti, Apr 23 2011
Numbers k such that A007913(k) = core(k) = k. - Franz Vrabec, Aug 27 2011
Numbers k such that sqrt(k) cannot be simplified. - Sean Loughran, Sep 04 2011
Indices m where A057918(m)=0, i.e., positive integers m for which there are no integers k in {1,2,...,m-1} such that k*m is a square. - John W. Layman, Sep 08 2011
It appears that these are numbers j such that Product_{k=1..j} (prime(k) mod j) = 0 (see Maple code). - Gary Detlefs, Dec 07 2011. - This is the same claim as Mohammed Bouayoun's Mar 30 2004 comment above. To see why it holds: Primorial numbers, A002110, a subsequence of this sequence, are never divisible by any nonsquarefree number, A013929, and on the other hand, the index of the greatest prime dividing any n is less than n. Cf. A243291. - Antti Karttunen, Jun 03 2014
Conjecture: For each n=2,3,... there are infinitely many integers b > a(n) such that Sum_{k=1..n} a(k)*b^(k-1) is prime, and the smallest such an integer b does not exceed (n+3)*(n+4). - Zhi-Wei Sun, Mar 26 2013
The probability that a random natural number belongs to the sequence is 6/Pi^2, A059956 (see Cesàro reference). - Giorgio Balzarotti, Nov 21 2013
Booker, Hiary, & Keating give a subexponential algorithm for testing membership in this sequence without factoring. - Charles R Greathouse IV, Jan 29 2014
Because in the factorizations into prime numbers these a(n) (n >= 2) have exponents which are either 0 or 1 one could call the a(n) 'numbers with a fermionic prime number decomposition'. The levels are the prime numbers prime(j), j >= 1, and the occupation numbers (exponents) e(j) are 0 or 1 (like in Pauli's exclusion principle). A 'fermionic state' is then denoted by a sequence with entries 0 or 1, where, except for the zero sequence, trailing zeros are omitted. The zero sequence stands for a(1) = 1. For example a(5) = 6 = 2^1*3^1 is denoted by the 'fermionic state' [1, 1], a(7) = 10 by [1, 0, 1]. Compare with 'fermionic partitions' counted in A000009. - Wolfdieter Lang, May 14 2014
From Vladimir Shevelev, Nov 20 2014: (Start)
The following is an Eratosthenes-type sieve for squarefree numbers. For integers > 1:
1) Remove even numbers, except for 2; the minimal non-removed number is 3.
2) Replace multiples of 3 removed in step 1, and remove multiples of 3 except for 3 itself; the minimal non-removed number is 5.
3) Replace multiples of 5 removed as a result of steps 1 and 2, and remove multiples of 5 except for 5 itself; the minimal non-removed number is 6.
4) Replace multiples of 6 removed as a result of steps 1, 2 and 3 and remove multiples of 6 except for 6 itself; the minimal non-removed number is 7.
5) Repeat using the last minimal non-removed number to sieve from the recovered multiples of previous steps.
Proof. We use induction. Suppose that as a result of the algorithm, we have found all squarefree numbers less than n and no other numbers. If n is squarefree, then the number of its proper divisors d > 1 is even (it is 2^k - 2, where k is the number of its prime divisors), and, by the algorithm, it remains in the sequence. Otherwise, n is removed, since the number of its squarefree divisors > 1 is odd (it is 2^k-1).
(End)
The lexicographically least sequence of integers > 1 such that each entry has an even number of proper divisors occurring in the sequence (that's the sieve restated). - Glen Whitney, Aug 30 2015
0 is nonsquarefree because it is divisible by any square. - Jon Perry, Nov 22 2014, edited by M. F. Hasler, Aug 13 2015
The Heinz numbers of partitions with distinct parts. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} prime(j) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] the Heinz number is 2*2*3*7*29 = 2436. The number 30 (= 2*3*5) is in the sequence because it is the Heinz number of the partition [1,2,3]. - Emeric Deutsch, May 21 2015
It is possible for 2 consecutive terms to be even; for example a(258)=422 and a(259)=426. - Thomas Ordowski, Jul 21 2015. [These form a subsequence of A077395 since their product is divisible by 4. - M. F. Hasler, Aug 13 2015]
There are never more than 3 consecutive terms. Runs of 3 terms start at 1, 5, 13, 21, 29, 33, ... (A007675). - Ivan Neretin, Nov 07 2015
a(n) = product of row n in A265668. - Reinhard Zumkeller, Dec 13 2015
Numbers without excess, i.e., numbers k such that A001221(k) = A001222(k). - Juri-Stepan Gerasimov, Sep 05 2016
Numbers k such that b^(phi(k)+1) == b (mod k) for every integer b. - Thomas Ordowski, Oct 09 2016
Boreico shows that the set of square roots of the terms of this sequence is linearly independent over the rationals. - Jason Kimberley, Nov 25 2016 (reference found by Michael Coons).
Numbers k such that A008836(k) = A008683(k). - Enrique Pérez Herrero, Apr 04 2018
The prime zeta function P(s) "has singular points along the real axis for s=1/k where k runs through all positive integers without a square factor". See Wolfram link. - Maleval Francis, Jun 23 2018
Numbers k such that A007947(k) = k. - Kyle Wyonch, Jan 15 2021
The Schnirelmann density of the squarefree numbers is 53/88 (Rogers, 1964). - Amiram Eldar, Mar 12 2021
Comment from Isaac Saffold, Dec 21 2021: (Start)
Numbers k such that all groups of order k have a trivial Frattini subgroup [Dummit and Foote].
Let the group G have order n. If n is squarefree and n > 1, then G is solvable, and thus by Hall's Theorem contains a subgroup H_p of index p for all p | n. Each H_p is maximal in G by order considerations, and the intersection of all the H_p's is trivial. Thus G's Frattini subgroup Phi(G), being the intersection of G's maximal subgroups, must be trivial. If n is not squarefree, the cyclic group of order n has a nontrivial Frattini subgroup. (End)
Numbers for which the squarefree divisors (A206778) and the unitary divisors (A077610) are the same; moreover they are also the set of divisors (A027750). - Bernard Schott, Nov 04 2022
0 = A008683(a(n)) - A008836(a(n)) = A001615(a(n)) - A000203(a(n)). - Torlach Rush, Feb 08 2023
From Robert D. Rosales, May 20 2024: (Start)
Numbers n such that mu(n) != 0, where mu(n) is the Möbius function (A008683).
Solutions to the equation Sum_{d|n} mu(d)*sigma(d) = mu(n)*n, where sigma(n) is the sum of divisors function (A000203). (End)
a(n) is the smallest root of x = 1 + Sum_{k=1..n-1} floor(sqrt(x/a(k))) greater than a(n-1). - Yifan Xie, Jul 10 2024
REFERENCES
Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 165, p. 53, Ellipses, Paris, 2008.
Dummit, David S., and Richard M. Foote. Abstract algebra. Vol. 1999. Englewood Cliffs, NJ: Prentice Hall, 1991.
Ivan M. Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 251.
Michael Pohst and Hans J. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, page 432.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Daniel Forgues, Table of n, a(n) for n = 1..60794 (first 10000 terms from T. D. Noe)
Zenon B. Batang, Squarefree integers and the abc conjecture, arXiv:2109.10226 [math.GM], 2021.
Andrew R. Booker, Ghaith A. Hiary and Jon P. Keating, Detecting squarefree numbers, Duke Mathematical Journal, Vol. 164, No. 2 (2015), pp. 235-275; arXiv preprint, arXiv:1304.6937 [math.NT], 2013-2015.
Iurie Boreico, Linear independence of radicals, The Harvard College Mathematics Review 2(1), 87-92, Spring 2008.
Ernesto Cesàro, La serie di Lambert in aritmetica assintotica, Rendiconto della Reale Accademia delle Scienze di Napoli, Serie 2, Vol. 7 (1893), pp. 197-204.
Henri Cohen, Francois Dress, and Mohamed El Marraki, Explicit estimates for summatory functions linked to the Möbius μ-function, Functiones et Approximatio Commentarii Mathematici 37 (2007), part 1, pp. 51-63.
H. Gent, Letter to N. J. A. Sloane, Nov 27 1975.
Andrew Granville, ABC means we can count squarefrees, International Mathematical Research Notices 19 (1998), 991-1009.
Pentti Haukkanen, Mika Mattila, Jorma K. Merikoski and Timo Tossavainen, Can the Arithmetic Derivative be Defined on a Non-Unique Factorization Domain?, Journal of Integer Sequences, Vol. 16 (2013), Article 13.1.2.
Aaron Krowne, squarefree number, PlanetMath.org.
Louis Marmet, First occurrences of square-free gaps and an algorithm for their computation, arXiv preprint arXiv:1210.3829 [math.NT], 2012.
Srinivasa Ramanujan, Irregular numbers, J. Indian Math. Soc., Vol. 5 (1913), pp. 105-106.
Kenneth Rogers, The Schnirelmann density of the squarefree integers, Proceedings of the American Mathematical Society, Vol. 15, No. 4 (1964), pp. 515-516.
J. A. Scott, Square-freedom revisited, The Mathematical Gazette, Vol. 90, No. 517 (2006), pp. 112-113.
Vladimir Shevelev, Set of all densities of exponentially S-numbers, arXiv preprint arXiv:1511.03860 [math.NT], 2015.
O. Trifonov, On the Squarefree Problem II, Math. Balkanica, Vol. 3 (1989), Fasc. 3-4.
Eric Weisstein's World of Mathematics, Squarefree.
Eric Weisstein's World of Mathematics, Prime Zeta Function.
Wikipedia, Squarefree integer.
FORMULA
Limit_{n->oo} a(n)/n = Pi^2/6 (see A013661). - Benoit Cloitre, May 23 2002
Equals A039956 UNION A056911. - R. J. Mathar, May 16 2008
A122840(a(n)) <= 1; A010888(a(n)) < 9. - Reinhard Zumkeller, Mar 30 2010
a(n) = A055229(A062838(n)) and a(n) > A055229(m) for m < A062838(n). - Reinhard Zumkeller, Apr 09 2010
A008477(a(n)) = 1. - Reinhard Zumkeller, Feb 17 2012
A055653(a(n)) = a(n); A055654(a(n)) = 0. - Reinhard Zumkeller, Mar 11 2012
A008966(a(n)) = 1. - Reinhard Zumkeller, May 26 2012
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(2*s). - Enrique Pérez Herrero, Jul 07 2012
A056170(a(n)) = 0. - Reinhard Zumkeller, Dec 29 2012
A013928(a(n)+1) = n. - Antti Karttunen, Jun 03 2014
A046660(a(n)) = 0. - Reinhard Zumkeller, Nov 29 2015
Equals {1} UNION A000040 UNION A006881 UNION A007304 UNION A046386 UNION A046387 UNION A067885 UNION A123321 UNION A123322 UNION A115343 ... - R. J. Mathar, Nov 05 2016
|a(n) - n*Pi^2/6| < 0.058377*sqrt(n) for n >= 268293; this result can be derived from Cohen, Dress, & El Marraki, see links. - Charles R Greathouse IV, Jan 18 2018
From Amiram Eldar, Jul 07 2021: (Start)
Sum_{n>=1} (-1)^(a(n)+1)/a(n)^2 = 9/Pi^2.
Sum_{k=1..n} 1/a(k) ~ (6/Pi^2) * log(n).
Sum_{k=1..n} (-1)^(a(k)+1)/a(k) ~ (2/Pi^2) * log(n).
(all from Scott, 2006) (End)
MAPLE
with(numtheory); a := [ ]; for n from 1 to 200 do if issqrfree(n) then a := [ op(a), n ]; fi; od:
t:= n-> product(ithprime(k), k=1..n): for n from 1 to 113 do if(t(n) mod n = 0) then print(n) fi od; # Gary Detlefs, Dec 07 2011
A005117 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if numtheory[issqrfree](a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Jan 09 2013
MATHEMATICA
Select[ Range[ 113], SquareFreeQ] (* Robert G. Wilson v, Jan 31 2005 *)
Select[Range[150], Max[Last /@ FactorInteger[ # ]] < 2 &] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
NextSquareFree[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sf = n + sgn; While[c < Abs[k], While[ ! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[ sgn < 0, sf--, sf++]; c++]; sf + If[ sgn < 0, 1, -1]]; NestList[ NextSquareFree, 1, 70] (* Robert G. Wilson v, Apr 18 2014 *)
Select[Range[250], MoebiusMu[#] != 0 &] (* Robert D. Rosales, May 20 2024 *)
PROG
(Magma) [ n : n in [1..1000] | IsSquarefree(n) ];
(PARI) bnd = 1000; L = vector(bnd); j = 1; for (i=1, bnd, if(issquarefree(i), L[j]=i; j=j+1)); L
(PARI) {a(n)= local(m, c); if(n<=1, n==1, c=1; m=1; while( c<n, m++; if(issquarefree(m), c++)); m)} /* Michael Somos, Apr 29 2005 */
(PARI) list(n)=my(v=vectorsmall(n, i, 1), u, j); forprime(p=2, sqrtint(n), forstep(i=p^2, n, p^2, v[i]=0)); u=vector(sum(i=1, n, v[i])); for(i=1, n, if(v[i], u[j++]=i)); u \\ Charles R Greathouse IV, Jun 08 2012
(PARI) for(n=1, 113, if(core(n)==n, print1(n, ", "))); \\ Arkadiusz Wesolowski, Aug 02 2016
(PARI)
S(n) = my(s); forsquarefree(k=1, sqrtint(n), s+=n\k[1]^2*moebius(k)); s;
a(n) = my(min=1, max=231, k=0, sc=0); if(n >= 144, min=floor(zeta(2)*n - 5*sqrt(n)); max=ceil(zeta(2)*n + 5*sqrt(n))); while(min <= max, k=(min+max)\2; sc=S(k); if(abs(sc-n) <= sqrtint(n), break); if(sc > n, max=k-1, if(sc < n, min=k+1, break))); while(!issquarefree(k), k-=1); while(sc != n, my(j=1); if(sc > n, j = -1); k += j; sc += j; while(!issquarefree(k), k += j)); k; \\ Daniel Suteu, Jul 07 2022
(PARI) first(n)=my(v=vector(n), i); forsquarefree(k=1, if(n<268293, (33*n+30)\20, (n*Pi^2/6+0.058377*sqrt(n))\1), if(i++>n, return(v)); v[i]=k[1]); v \\ Charles R Greathouse IV, Jan 10 2023
(Haskell)
a005117 n = a005117_list !! (n-1)
a005117_list = filter ((== 1) . a008966) [1..]
-- Reinhard Zumkeller, Aug 15 2011, May 10 2011
(Python)
from sympy.ntheory.factor_ import core
def ok(n): return core(n, 2) == n
print(list(filter(ok, range(1, 114)))) # Michael S. Branicky, Jul 31 2021
(Python)
from itertools import count, islice
from sympy import factorint
def A005117_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:all(x == 1 for x in factorint(n).values()), count(max(startvalue, 1)))
A005117_list = list(islice(A005117_gen(), 20)) # Chai Wah Wu, May 09 2022
(Python)
from math import isqrt
from sympy import mobius
def A005117(n):
def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Jul 22 2024
CROSSREFS
Complement of A013929. Subsequence of A072774 and A209061.
Characteristic function: A008966 (mu(n)^2, where mu = A008683).
Subsequences: A000040, A002110, A235488.
Subsequences: numbers j such that j*a(k) is squarefree where k > 1: A056911 (k = 2), A261034 (k = 3), A274546 (k = 5), A276378 (k = 6).
KEYWORD
nonn,easy,nice,core
STATUS
approved
Exponentially odd numbers.
+10
106
1, 2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 24, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 46, 47, 51, 53, 54, 55, 56, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 93, 94, 95, 96, 97
OFFSET
1,2
COMMENTS
The sequence is formed by 1 and the numbers whose prime power factorization contains only odd exponents.
The density of the sequence is the constant given by A065463.
Except for the first term the same as A002035. - R. J. Mathar, Feb 07 2016
Also numbers k all of whose divisors are bi-unitary divisors (i.e., A286324(k) = A000005(k)). - Amiram Eldar, Dec 19 2018
The term "exponentially odd integers" was apparently coined by Cohen (1960). These numbers were also called "unitarily 2-free", or "2-skew", by Cohen (1961). - Amiram Eldar, Jan 22 2024
LINKS
Eckford Cohen, Arithmetical functions associated with the unitary divisors of an integer, Mathematische Zeitschrift, Vol. 74 (1960), pp. 66-80.
Eckford Cohen, Some sets of integers related to the k-free integers, Acta Sci. Math. (Szeged), Vol. 22, No. 3-4 (1961), pp. 223-233.
Vladimir Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015.
Vladimir Shevelev, Set of all densities of exponentially S-numbers, arXiv preprint arXiv:1511.03860 [math.NT], 2015.
Vladimir Shevelev, S-exponential numbers, Acta Arithmetica, Vol. 175(2016), 385-395.
D. Suryanarayana and R. Sita Rama Chandra Rao, Distribution of unitarily k-free integers, Journal of the Australian Mathematical Society, Vol. 20 , No. 2 (1975), pp. 129-141.
FORMULA
Sum_{a(n)<=x} 1 = C*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c = 4*sqrt(2.4/log 2) = 7.44308... and C = Product_{prime p} (1 - 1/p*(p + 1)) = 0.7044422009991... (A065463).
Sum_{n>=1} 1/a(n)^s = zeta(2*s) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s)), s>1. - Amiram Eldar, Sep 26 2023
MATHEMATICA
Select[Range@ 100, AllTrue[Last /@ FactorInteger@ #, OddQ] &] (* Version 10, or *)
Select[Range@ 100, Times @@ Boole[OddQ /@ Last /@ FactorInteger@ #] == 1 &] (* Michael De Vlieger, Feb 02 2016 *)
PROG
(PARI) isok(n)=my(f = factor(n)); for (k=1, #f~, if (!(f[k, 2] % 2), return (0))); 1; \\ Michel Marcus, Feb 02 2016
(Python)
from itertools import count, islice
from sympy import factorint
def A268335_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:all(e&1 for e in factorint(n).values()), count(max(startvalue, 1)))
A268335_list = list(islice(A268335_gen(), 20)) # Chai Wah Wu, Jun 22 2023
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Feb 01 2016
STATUS
approved
Exponentially 2^n-numbers: 1 together with positive integers k such that all exponents in prime factorization of k are powers of 2.
+10
56
1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81
OFFSET
1,2
COMMENTS
Previous name: sequence consists of products of distinct relatively prime terms of A084400. - Vladimir Shevelev, Sep 24 2015
These numbers are also called "compact integers."
The density of this sequence exists and equals 0.872497...
There exist only seven compact factorials A000142(n) for n=1,2,3,6,7,10 and 11.
For a general definition of exponentially S-numbers, see comments in A209061. - Vladimir Shevelev, Sep 24 2015
The first 1000 digits of the density of the sequence were calculated by Juan Arias-de-Reyna in A271727. - Vladimir Shevelev, Apr 18 2016
A225546 maps the set of terms 1:1 onto A268375. - Peter Munn, Jan 26 2020
Numbers whose sets of unitary divisors (A077610) and infinitary divisors (A077609) coincide. - Amiram Eldar, Dec 23 2020
LINKS
S. Litsyn and V. Shevelev, On Factorization of Integers with Restrictions on the Exponents, INTEGERS: The Electronic Journal of Combinatorial Number Theory 7 (2007), #A33.
Vladimir Shevelev, Compact integers and factorials, Acta Arithmetica 126:3 (2007), pp. 195-236.
Vladimir Shevelev, Set of all densities of exponentially S-numbers, arXiv preprint arXiv:1511.03860 [math.NT], 2015-2016.
FORMULA
Identities arising from the calculation of the density h of the sequence (cf. [Shevelev] and comment for a generalization in A209061):
h = Product_{prime p} Sum_{j in {0 and 2^k}}(p-1)/p^(j+1) = Product_{prime p} (1 + Sum_{j>=2} (u(j) - u(j-1))/p^j) = (1/zeta(2))* Product_{p}(1 + 1/(p+1))*Sum_{i>=1}p^(-(2^i-1)), where u(n) is the characteristic function of set {2^k, k>=0}. - Vladimir Shevelev, Sep 24 2015
EXAMPLE
60 = 2^(2^1)*3^(2^0)*5^(2^0).
MAPLE
isA000079 := proc(n)
if n = 1 then
true;
else
type(n, 'even') and nops(numtheory[factorset](n))=1 ;
simplify(%) ;
end if;
end proc:
isA138302 := proc(n)
local p;
if n = 1 then
return true;
end if;
for p in ifactors(n)[2] do
if not isA000079(op(2, p)) then
return false;
end if;
end do:
true ;
end proc:
for n from 1 to 100 do
if isA138302(n) then
printf("%d, ", n) ;
end if;
end do: # R. J. Mathar, Sep 27 2016
MATHEMATICA
lst={}; Do[p=Prime[n]; s=p^(1/3); f=Floor[s]; a=f^3; d=p-a; AppendTo[lst, d], {n, 100}]; Union[lst] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)
selQ[n_] := AllTrue[FactorInteger[n][[All, 2]], IntegerQ[Log[2, #]]&];
Select[Range[100], selQ] (* Jean-François Alcover, Oct 29 2018 *)
PROG
(PARI) is(n)=if(n<8, n>0, vecmin(apply(n->n>>valuation(n, 2)==1, factor(n)[, 2]))) \\ Charles R Greathouse IV, Dec 07 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, May 07 2008
EXTENSIONS
Incorrect comment removed by Charles R Greathouse IV, Dec 07 2012
Simpler name from Vladimir Shevelev, Sep 24 2015
Edited by N. J. A. Sloane, Nov 07 2015
STATUS
approved
Biquadratefree numbers: numbers that are not divisible by any 4th power greater than 1.
+10
43
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76
OFFSET
1,2
COMMENTS
Differs from A023809 at entries 0, 81, 162, 225, 226, etc. - R. J. Mathar, Oct 18 2008
Density is 1/zeta(4) = A215267 = 0.923938.... - Charles R Greathouse IV, Sep 02 2015
The Schnirelmann density of the biquadratefree numbers is 145/157 (Orr, 1969). - Amiram Eldar, Mar 12 2021
This sequence has arbitrarily large gaps and hence is not a Beatty sequence. - Charles R Greathouse IV, Jan 27 2022
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
Richard C. Orr, On the Schnirelmann density of the sequence of k-free integers, Journal of the London Mathematical Society, Vol. 1, No. 1 (1969), pp. 313-319.
Eric Weisstein's World of Mathematics, Biquadratefree.
FORMULA
A051903(a(n)) < 4. - Reinhard Zumkeller, Sep 03 2015
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(4*s), for s > 1. - Amiram Eldar, Dec 27 2022
MAPLE
A046100 := proc(n)
option remember;
local a, p, is4free;
if n = 1 then
return 1;
else
for a from procname(n-1)+1 do
is4free := true ;
for p in ifactors(a)[2] do
if op(2, p) >= 4 then
is4free := false;
break;
end if;
end do:
if is4free then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Aug 08 2012
MATHEMATICA
lst={}; Do[a=0; Do[If[FactorInteger[m][[n, 2]]>4, a=1], {n, Length[FactorInteger[m]]}]; If[a!=1, AppendTo[lst, m]], {m, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 27 2008 *)
Select[Range[100], Max[FactorInteger[#][[;; , 2]]]<4&] (* Harvey P. Dale, Jul 13 2023 *)
PROG
(PARI) is(n)=n==1 || vecmax(factor(n)[, 2])<4 \\ Charles R Greathouse IV, Jun 16 2012
(Sage)
def is_biquadratefree(n):
return all(c[1] < 4 for c in n.factor())
def A046100_list(n): return [i for i in (1..n) if is_biquadratefree(i)]
A046100_list(76) # Peter Luschny, Aug 08 2012
(Haskell)
a046100 n = a046100_list !! (n-1)
a046100_list = filter ((< 4) . a051903) [1..]
-- Reinhard Zumkeller, Sep 03 2015
(Python)
from sympy import mobius, integer_nthroot
def A046100(n):
def f(x): return n+x-sum(mobius(k)*(x//k**4) for k in range(1, integer_nthroot(x, 4)[0]+1))
m, k = n, f(n)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Aug 05 2024
CROSSREFS
Cf. A046101, A005117 (2-free), A004709 (3-free).
Subsequence of A209061.
KEYWORD
nonn
EXTENSIONS
Name edited by Amiram Eldar, Jul 29 2024
STATUS
approved
Exponentially evil numbers.
+10
24
1, 8, 27, 32, 64, 125, 216, 243, 343, 512, 729, 864, 1000, 1024, 1331, 1728, 1944, 2197, 2744, 3125, 3375, 4000, 4096, 4913, 5832, 6859, 7776, 8000, 9261, 10648, 10976, 12167, 13824, 15552, 15625, 16807, 17576, 19683, 21952, 23328, 24389, 25000, 27000, 27648, 29791
OFFSET
1,2
COMMENTS
Or the numbers whose prime power factorization contains primes only in evil exponents (A001969): 0, 3, 5, 6, 9, 10, 12, ...
If n is in the sequence, then n^2 is also in the sequence.
A268385 maps each term of this sequence to a unique nonzero square (A000290), and vice versa. - Antti Karttunen, May 26 2016
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Reinhard Zumkeller)
FORMULA
Product_{k=1..A001221(n)} A010059(A124010(n,k)) = 1. - Reinhard Zumkeller, Oct 25 2015
Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + Sum_{k>=2} 1/p^A001969(k)) = Product_{p prime} f(1/p) = 1.2413599378..., where f(x) = (1/(1-x) + Product_{k>=0} (1 - x^(2^k)))/2. - Amiram Eldar, May 18 2023, Dec 01 2023
EXAMPLE
864 = 2^5*3^3; since 5 and 3 are evil numbers, 864 is in the sequence.
MATHEMATICA
{1}~Join~Select[Range@ 30000, AllTrue[Last /@ FactorInteger[#], EvenQ@ First@ DigitCount[#, 2] &] &] (* Michael De Vlieger, Sep 27 2015, Version 10 *)
expEvilQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], EvenQ[DigitCount[#, 2, 1]] &]; With[{max = 30000}, Select[Union[Flatten[Table[i^2*j^3, {j, Surd[max, 3]}, {i, Sqrt[max/j^3]}]]], expEvilQ]] (* Amiram Eldar, Dec 01 2023 *)
PROG
(PARI) isok(n) = {my(f = factor(n)); for (i=1, #f~, if (hammingweight(f[i, 2]) % 2, return (0)); ); return (1); } \\ Michel Marcus, Sep 27 2015
(Haskell)
a262675 n = a262675_list !! (n-1)
a262675_list = filter
(all (== 1) . map (a010059 . fromIntegral) . a124010_row) [1..]
-- Reinhard Zumkeller, Oct 25 2015
(Perl) use ntheory ":all"; sub isok { my @f = factor_exp($_[0]); return scalar(grep { !(hammingweight($_->[1]) % 2) } @f) == @f; } # Dana Jacobsen, Oct 26 2015
CROSSREFS
Subsequence of A036966.
Apart from 1, a subsequence of A270421.
Indices of ones in A270418.
Sequence A270437 sorted into ascending order.
KEYWORD
nonn,base
AUTHOR
Vladimir Shevelev, Sep 27 2015
EXTENSIONS
More terms from Michel Marcus, Sep 27 2015
STATUS
approved
Numbers whose exponents in their prime power factorization are squares.
+10
18
1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 48, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 80, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101
OFFSET
1,2
COMMENTS
Numbers whose prime factorization has the form Product_i p_i^e_i where the e_i are all squares.
All squarefree numbers (A005117) are in the sequence. - Vladimir Shevelev, Nov 16 2015
Let h_k be the density of the subsequence of A197680 of numbers whose prime power factorization (PPF) has the form Product_i p_i^e_i where the e_i all squares <= k^2. Then for every k>1 there exists eps_k>0 such that for any x from the interval (h_k-eps_k, h_k) there is no a sequence S of positive integers such that x is the density of numbers whose PPF has the form Product_i p_i^e_i where the e_i are all in S. - For a proof, see [Shevelev], second link. - Vladimir Shevelev, Nov 17 2015
Numbers with an odd number of exponential divisors (A049419). - Amiram Eldar, Nov 05 2021
LINKS
StackExchange, Question 73354, 2011.
Vladimir Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015.
Vladimir Shevelev, Set of all densities of exponentially S-numbers, arXiv:1511.03860 [math.NT], 2015.
Vladimir Shevelev, S-exponential numbers, Acta Arithmetica, Vol. 175 (2016), pp. 385-395.
FORMULA
Sum_{i<=x, i is in A197680} 1 = h*x + O(sqrt(x)*log x*e^(c*sqrt(log x)/(log(log x))), where c=4*sqrt(2.4/log 2)=7.44308... and h=Product_{prime p} (1+Sum_{i>=2} (u(i)-u(i-1))/p^i)=0.641115... where u(n) is the characteristic function of sequence A000290. The calculations of h in the formula were done independently by Juan Arias-de-Reyna and Peter J. C. Moses. For a proof of the formula, see the first Shevelev link. - Vladimir Shevelev, Nov 17 2015
MAPLE
a:= proc(n) option remember; local k; for k from 1+
`if`(n=1, 0, a(n-1)) while 0=mul(`if`(issqr(
i[2]), 1, 0), i=ifactors(k)[2]) do od; k
end:
seq(a(n), n=1..80); # Alois P. Heinz, Jun 30 2016
MATHEMATICA
Select[Range[100], Union[IntegerQ /@ Sqrt[Transpose[FactorInteger[#]][[2]]]][[1]] &] (* T. D. Noe, Oct 18 2011 *)
PROG
(PARI) isok(n) = {my(f = factor(n)[, 2]); #select(x->issquare(x), f) == #f; } \\ Michel Marcus, Oct 23 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
A. Neves, Oct 17 2011
EXTENSIONS
Reformulation of the name by Vladimir Shevelev, Oct 14 2015
STATUS
approved
Numbers that are not exponentially squarefree.
+10
8
16, 48, 80, 81, 112, 144, 162, 176, 208, 240, 256, 272, 304, 324, 336, 368, 400, 405, 432, 464, 496, 512, 528, 560, 567, 592, 624, 625, 648, 656, 688, 720, 752, 768, 784, 810, 816, 848, 880, 891, 912, 944, 976
OFFSET
1,1
COMMENTS
A positive integer is called exponentially squarefree (e-squarefree) if in its prime power factorization all the exponents are squarefree.
a(n) is the sequence of positive integers in which prime power factorization there is at least one nonsquarefree exponent.
n is non-e-squarefree iff f(n)=0, where f(n) is the exponential Moebius function A166234.
Product_{k = 1..A001221(n)} A008966(A124010(n,k)) = 0. - Reinhard Zumkeller, Mar 13 2012
The density of {a(n)} is 0.04407699... (see comment in A209061). - Peter J. C. Moses and Vladimir Shevelev, Sep 08 2015
LINKS
M. V. Subbarao, On some arithmetic convolutions, in The Theory of Arithmetic Functions, Lecture Notes in Mathematics No. 251, 247-271, Springer, 1972, doi:10.1007/BFb0058796.
Laszlo Toth, On certain arithmetic functions involving exponential divisors, II., Annales Univ. Sci. Budapest., Sect. Comp., 27 (2007), 155-166.
EXAMPLE
16=2^4, 48=2^4*3, 256=2^8 are non-e-squarefree, since 4 and 8 are nonsquarefree.
MAPLE
filter:=n -> not andmap(t -> numtheory:-issqrfree(t[2]), ifactors(n)[2]);
select(filter, [$1..1000]); # Robert Israel, Sep 03 2015
MATHEMATICA
Select[Range@ 1000, ! AllTrue[Last /@ FactorInteger@ #, SquareFreeQ] &] (* Michael De Vlieger, Sep 07 2015, Version 10 *)
PROG
(Haskell)
a130897 n = a130897_list !! (n-1)
a130897_list = filter
(any (== 0) . map (a008966 . fromIntegral) . a124010_row) [1..]
-- Reinhard Zumkeller, Mar 13 2012
(PARI) is(n)=my(f=factor(n)[, 2]); for(i=1, #f, if(!issquarefree(f[i]), return(1))); 0 \\ Charles R Greathouse IV, Sep 03 2015
CROSSREFS
Complement of A209061; subsequence of A013929, A046099, and A046101.
KEYWORD
nonn
AUTHOR
Laszlo Toth, Mar 18 2011
STATUS
approved

Search completed in 0.019 seconds