[go: up one dir, main page]

login
Search: a200091 -id:a200091
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle T(n,k) of associated Stirling numbers of second kind, n >= 2, 1 <= k <= floor(n/2).
+10
33
1, 1, 1, 3, 1, 10, 1, 25, 15, 1, 56, 105, 1, 119, 490, 105, 1, 246, 1918, 1260, 1, 501, 6825, 9450, 945, 1, 1012, 22935, 56980, 17325, 1, 2035, 74316, 302995, 190575, 10395, 1, 4082, 235092, 1487200, 1636635, 270270, 1, 8177, 731731, 6914908, 12122110
OFFSET
2,4
COMMENTS
T(n,k) is the number of set partitions of [n] into k blocks of size at least 2. Compare with A008277 (blocks of size at least 1) and A059022 (blocks of size at least 3). See also A200091. Reading the table by diagonals gives A134991. The row generating polynomials are the Mahler polynomials s_n(-x). See [Roman, 4.9]. - Peter Bala, Dec 04 2011
Row n gives coefficients of moments of Poisson distribution about the mean expressed as polynomials in lambda [Haight]. The coefficients of the moments about the origin are the Stirling numbers of the second kind, A008277. - N. J. A. Sloane, Jan 24 2020
Rows are of lengths 1,1,2,2,3,3,..., a pattern typical of matrices whose diagonals are rows of another lower triangular matrix--in this instance those of A134991. - Tom Copeland, May 01 2017
For a relation to decomposition of spin correlators see Table 2 of the Delfino and Vito paper. - Tom Copeland, Nov 11 2012
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.
Frank Avery Haight, "Handbook of the Poisson distribution," John Wiley, 1967. See pages 6,7, but beware of errors. [Haight on page 7 gives five different ways to generate these numbers (see link)].
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.
S. Roman, The Umbral Calculus, Dover Publications, New York (2005), pp. 129-130.
LINKS
Vincenzo Librandi and Alois P. Heinz, Rows n = 2..200, flattened (rows n = 2..104 from Vincenzo Librandi)
Joerg Arndt and N. J. A. Sloane, Counting Words that are in "Standard Order"
J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013.
J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Generalized Stirling permutations and forests: Higher-order Eulerian and Ward numbers, Electronic Journal of Combinatorics 22(3) (2015), #P3.37.
Fufa Beyene, Jörgen Backelin, Roberto Mantaci, and Samuel A. Fufa, Set Partitions and Other Bell Number Enumerated Objects, J. Int. Seq., Vol. 26 (2023), Article 23.1.8.
Gilles Bonnet and Anna Gusakova, Concentration inequalities for Poisson U-statistics, arXiv:2404.16756 [math.PR], 2024. See p. 17.
E. Rodney Canfield, J. William Helton, and Jared A. Hughes, Uniform Convergence of an Asymptotic Approximation to Associated Stirling Numbers, arXiv:2409.01489 [math.CO], 2024. See p. 12.
Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 3.
Daniel W. Cranston and Chun-Hung Liu, Proper Conflict-free Coloring of Graphs with Large Maximum Degree, arXiv:2211.02818 [math.CO], 2022.
Gesualdo Delfino and Jacopo Viti, Potts q-color field theory and scaling random cluster model, arXiv:1104.4323 [hep-th], 2011.
Ming-Jian Ding and Jiang Zeng, Proof of an explicit formula for a series from Ramanujan's Notebooks via tree functions, arXiv:2307.00566 [math.CO], 2023.
A. E. Fekete, Apropos two notes on notation, Amer. Math. Monthly, 101 (1994), 771-778.
F. A. Haight, Handbook of the Poisson distribution, John Wiley, 1967 [Annotated scan of page 7 only. Note that there is an error in the table.]
Mathematics Stack Exchange, Mahler polynomials and the zeros of the incomplete gamma function, a Mathematics Stack Exchange question by Tom Copeland, Jan 06 2016.
R. Paris, A uniform asymptotic expansion for the incomplete gamma function, Journal of Computational and Applied Mathematics, 148 (2002), p. 223-239 (See 332. From Tom Copeland, Jan 03 2016).
L. M. Smiley, Completion of a Rational Function Sequence of Carlitz, arXiv:math/0006106 [math.CO], 2000.
M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq. 14 (2011) # 11.9.7.
Erik Vigren and Andreas Dieckmann, A New Result in Form of Finite Triple Sums for a Series from Ramanujan’s Notebooks, Symmetry (2022) Vol. 14, No. 6, 1090.
Eric Weisstein's World of Mathematics, Mahler polynomial
FORMULA
T(n,k) = abs(A137375(n,k)).
E.g.f. with additional constant 1: exp(t*(exp(x)-1-x)) = 1 + t*x^2/2! + t*x^3/3! + (t+3*t^2)*x^4/4! + ....
Recurrence relation: T(n+1,k) = k*T(n,k) + n*T(n-1,k-1).
T(n,k) = A134991(n-k,k); A134991(n,k) = T(n+k,k).
More generally, if S_r(n,k) gives the number of set partitions of [n] into k blocks of size at least r then we have the recurrence S_r(n+1,k) = k*S_r(n,k) + binomial(n,r-1)*S_r(n-r+1,k-1) (for this sequence, r=2), with associated e.g.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*(t^n/n!) = exp(u*(e^t - Sum_{i=0..r-1} t^i/i!)).
T(n,k) = Sum_{i=0..k} (-1)^i*binomial(n, i)*Sum_{j=0..k-i} (-1)^j*(k-i-j)^(n-i)/(j!*(k-i-j)!). - David Wasserman, Jun 13 2007
G.f.: (R(0)-1)/(x^2*y), where R(k) = 1 - (k+1)*y*x^2/( (k+1)*y*x^2 - (1-k*x)*(1-x-k*x)/R(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 09 2013
T(n,k) = Sum_{i=0..min(n,k)} (-1)^i * binomial(n,i) * Stirling2(n-i,k-i) = Sum_{i=0..min(n,k)} (-1)^i * A007318(n,i) * A008277(n-i,k-i). - Max Alekseyev, Feb 27 2017
T(n, k) = Sum_{j=0..n-k} binomial(j, n-2*k)*E2(n-k, n-k-j) where E2(n, k) are the second-order Eulerian numbers A340556. - Peter Luschny, Feb 11 2021
EXAMPLE
There are 3 ways of partitioning a set N of cardinality 4 into 2 blocks each of cardinality at least 2, so T(4,2)=3.
Table begins:
1;
1;
1, 3;
1, 10;
1, 25, 15;
1, 56, 105;
1, 119, 490, 105;
1, 246, 1918, 1260;
1, 501, 6825, 9450, 945;
1, 1012, 22935, 56980, 17325;
1, 2035, 74316, 302995, 190575, 10395;
1, 4082, 235092, 1487200, 1636635, 270270;
1, 8177, 731731, 6914908, 12122110, 4099095, 135135;
...
Reading the table by diagonals produces the triangle A134991.
MAPLE
A008299 := proc(n, k) local i, j, t1; if k<1 or k>floor(n/2) then t1 := 0; else
t1 := add( (-1)^i*binomial(n, i)*add( (-1)^j*(k - i - j)^(n - i)/(j!*(k - i - j)!), j = 0..k - i), i = 0..k); fi; t1; end; # N. J. A. Sloane, Dec 06 2016
G:= exp(lambda*(exp(x)-1-x)):
S:= series(G, x, 21):
seq(seq(coeff(coeff(S, x, n)*n!, lambda, k), k=1..floor(n/2)), n=2..20); # Robert Israel, Jan 15 2020
T := proc(n, k) option remember; if n < 0 then return 0 fi; if k = 0 then return k^n fi; k*T(n-1, k) + (n-1)*T(n-2, k-1) end:
seq(seq(T(n, k), k=1..n/2), n=2..9); # Peter Luschny, Feb 11 2021
MATHEMATICA
t[n_, k_] := Sum[ (-1)^i*Binomial[n, i]*Sum[ (-1)^j*(k - i - j)^(n - i)/(j!*(k - i - j)!), {j, 0, k - i}], {i, 0, k}]; Flatten[ Table[ t[n, k], {n, 2, 14}, {k, 1, Floor[n/2]}]] (* Jean-François Alcover, Oct 13 2011, after David Wasserman *)
Table[Sum[Binomial[n, k - j] StirlingS2[n - k + j, j] (-1)^(j + k), {j, 0, k}], {n, 15}, {k, n/2}] // Flatten (* Eric W. Weisstein, Nov 13 2018 *)
PROG
(PARI) {T(n, k) = if( n < 1 || 2*k > n, n==0 && k==0, sum(i=0, k, (-1)^i * binomial( n, i) * sum(j=0, k-i, (-1)^j * (k-i-j)^(n-i) / (j! * (k-i-j)!))))}; /* Michael Somos, Oct 19 2014 */
(PARI) { T(n, k) = sum(i=0, min(n, k), (-1)^i * binomial(n, i) * stirling(n-i, k-i, 2) ); } /* Max Alekseyev, Feb 27 2017 */
CROSSREFS
Rows: A000247 (k=2), A000478 (k=3), A058844 (k=4).
Row sums: A000296, diagonal: A259877.
KEYWORD
nonn,tabf,nice,easy
EXTENSIONS
Formula and cross-references from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000
Edited by Peter Bala, Dec 04 2011
Edited by N. J. A. Sloane, Jan 24 2020
STATUS
approved
Number of ways to partition n labeled elements into sets of sizes of at least 2 and order the sets.
+10
33
1, 0, 1, 1, 7, 21, 141, 743, 5699, 42241, 382153, 3586155, 38075247, 428102117, 5257446533, 68571316063, 959218642651, 14208251423433, 223310418094785, 3699854395380371, 64579372322979335, 1182959813115161773, 22708472725269799933, 455643187943171348103
OFFSET
0,5
COMMENTS
From Dennis P. Walsh, Apr 15 2013: (Start)
With m = floor(n/2), a(n) is the number of ways to distribute n different toys to m numbered children such that each child receiving a toy gets at least two toys and, if child k gets no toys, then each child numbered higher than k also gets no toys.
a(n) = sum of n-th row of triangle A200091 for n >= 2. (End)
LINKS
C. G. Bower, Transforms (2).
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see p. 245.
I. Mezo, Periodicity of the last digits of some combinatorial sequences, arXiv preprint arXiv:1308.1637 [math.CO], 2013 and J. Int. Seq. 17 (2014) #14.1.1.
Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
FORMULA
"AIJ" (ordered, indistinct, labeled) transform of 0, 1, 1, 1...
E.g.f.: 1/(2+x-exp(x)).
a(n) = n! * Sum_{k=1..n} Sum_{j=0..k} C(k,j) * Stirling2(n-k+j,j) * (j!/(n-k+j)!) *(-1)^(k-j); a(0)=1. - Vladimir Kruchinin, Feb 01 2011
a(n) ~ n! / ((r-1)*(r-2)^(n+1)), where r = -LambertW(-1,-exp(-2)) = 3.14619322062... - Vaclav Kotesovec, Oct 08 2013
a(0) = 1; a(n) = Sum_{k=2..n} binomial(n,k) * a(n-k). - Ilya Gutkovskiy, Feb 09 2020
a(n) = Sum_{s in S_n^0} Product_{i=1..n} binomial(i,s(i)-1), where s ranges over the set S_n^0 of derangements of [n], i.e., the permutations of [n] without fixed points. - Jose A. Rodriguez, Feb 02 2021
EXAMPLE
For n=5, a(5)=21 since there are 21 toy distributions satisfying the conditions above. Denoting a distribution by |kid_1 toys|kid_2 toys|, we have the distributions
|t1,t2,t3,t4,t5|_|, |t1,t2,t3|t4,t5|, |t1,t2,t4|t3,t5|, |t1,t2,t5|t3,t4|, |t1,t3,t4|t2,t5|, |t1,t3,t5|t2,t4|, |t1,t4,t5|t2,t3|, |t2,t3,t4|t1,t5|, |t2,t3,t5|t1,t4|, |t2,t4,t5|t1,t3|, |t3,t4,t5|t1,t2|, |t1,t2|t3,t4,t5|, |t1,t3|t2,t4,t5|, |t1,t4|t2,t3,t5|, |t1,t5|t2,t3,t4|, |t2,t3|t1,t4,t5|, |t2,t4|t1,t3,t5|, |t2,t5|t1,t3,t4|, |t3,t4|t1,t2,t5|, |t3,t5|t1,t2,t4|, and |t4,t5|,t1,t2,t3|. - Dennis P. Walsh, Apr 15 2013
MAPLE
spec := [ B, {B=Sequence(Set(Z, card>1))}, labeled ]; [seq(combstruct[count](spec, size=n), n=0..30)];
# second Maple program:
b:= proc(n) b(n):= `if`(n=0, 1, add(b(n-j)/j!, j=2..n)) end:
a:= n-> n!*b(n):
seq(a(n), n=0..25); # Alois P. Heinz, Jul 29 2014
MATHEMATICA
a[n_] := n! * Sum[ Binomial[k, j] * StirlingS2[n-k+j, j]*j! / (n-k+j)! * (-1)^(k-j), {k, 1, n}, {j, 0, k}]; a[0] = 1; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Sep 05 2012, from given formula *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace( 1/(2+x-exp(x)) ) ) \\ Joerg Arndt, Apr 16 2013
CROSSREFS
Cf. column k=2 of A245732.
Cf. A200091.
KEYWORD
nonn
STATUS
approved
Number of ordered pairs of complementary subsets of an n-set with both subsets of cardinality at least 2.
+10
11
0, 0, 0, 0, 6, 20, 50, 112, 238, 492, 1002, 2024, 4070, 8164, 16354, 32736, 65502, 131036, 262106, 524248, 1048534, 2097108, 4194258, 8388560, 16777166, 33554380, 67108810, 134217672, 268435398, 536870852, 1073741762
OFFSET
0,5
COMMENTS
a(n) is the number of binary sequences of length n having at least two 0's and at least two 1's. a(4)=6 because there are six binary sequences of length four that have two or more 0's and two or more 1's: 0011, 0101, 0110, 1100, 1010, 1001. - Geoffrey Critzer, Feb 11 2009
For n>3, a(n) is also the sum of those terms from the n-th row of Pascal's triangle which also occur in A006987: 6, 10+10, 15+20+15, 21+35+35+21,... - Douglas Latimer, Apr 02 2012
From Dennis P. Walsh, Apr 09 2013: (Start)
Column 2 of triangle A200091.
Number of doubly-surjective functions f:[n]->[2].
Number of ways to distribute n different toys to 2 children so that each child gets at least 2 toys. (End)
a(n) is the number of subsets of an n-set of cardinality k with 2 <= k <= n - 2. - Rick L. Shepherd, Dec 05 2014
FORMULA
E.g.f.: (exp(x) - x - 1)^2. - Joerg Arndt, Apr 10 2013
n*a(n+2) - (1+3*n)*a(n+1) + 2(1+n)*a(n) = 0, with a(0) = .. = a(3) = 0, a(4) = 6.
For n>2, a(n) = 2^n - 2n - 2 = A005803(n) - 2 = A070313(n) - 1 = A071099(n) - A071099(n+1) + 1 = 2*A000247(n-1). - Ralf Stephan, Jan 11 2004
G.f.: 2*x^4*(3-2*x)/((1-x)^2*(1-2*x)). - Colin Barker, Feb 19 2012
MAPLE
Pairs spec := [S, {S=Prod(B, B), B=Set(Z, 2 <= card)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
Join[{0, 0, 0}, LinearRecurrence[{4, -5, 2}, {0, 6, 20}, 35]] (* G. C. Greubel, May 13 2019 *)
With[{nn=30}, CoefficientList[Series[(Exp[x]-x-1)^2, {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, May 29 2023 *)
PROG
(PARI) concat([0, 0, 0, 0], Vec((6-4*x)/(1-x)^2/(1-2*x)+O(x^35))) \\ Charles R Greathouse IV, Apr 03 2012
(PARI) x='x+O('x^35); concat([0, 0, 0, 0], Vec(serlaplace((exp(x)-x-1)^2))) \\ Joerg Arndt, Apr 10 2013
(Magma) m:=35; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( (Exp(x)-1-x)^2 )); [0, 0, 0, 0] cat [Factorial(n+3)*b[n]: n in [1..m-5]]; // G. C. Greubel, May 13 2019
(Sage) (2*x^4*(3-2*x)/((1-x)^2*(1-2*x))).series(x, 35).coefficients(x, sparse=False) # G. C. Greubel, May 13 2019
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from Ralf Stephan, Jan 11 2004
Definition corrected by Rainer Rosenthal, Feb 12 2010
Definition further clarified by Rick L. Shepherd, Dec 05 2014
STATUS
approved
The number of ways of putting n labeled items into k labeled boxes so that each box receives at least 3 objects.
+10
2
1, 1, 1, 1, 20, 1, 70, 1, 182, 1, 420, 1680, 1, 912, 12600, 1, 1914, 62370, 1, 3938, 256410, 369600, 1, 8008, 949806, 4804800, 1, 16172, 3297294, 38678640, 1, 32526, 10966956, 248047800, 168168000
OFFSET
3,5
COMMENTS
Equivalently, the number of ordered set partitions of the set [n] into k blocks of size at least three. When the boxes are unlabeled we obtain A059022.
FORMULA
E.g.f. with additional constant 1: 1/(1 - t*(exp(x) - 1 - x - x^2/2!)) = 1 + t*x^3/3! + t*x^4/4! + t*x^5/5! + (t+20*t^2)*x^6/6! + ....
Recurrence relation: T(n+1,k) = k*(T(n,k) + n*(n-1)/2*T(n-2,k-1)). T(n,k) = k!*A059022(n,k).
EXAMPLE
Table begins
n\k | 1 2 3
----+-----------------
3 | 1
4 | 1
5 | 1
6 | 1 20
7 | 1 70
8 | 1 182
9 | 1 420 1680
10 | 1 912 12600
11 | 1 1914 62370
...
T(6,2) = 20: The arrangements of 6 objects into 2 boxes { } and [ ] so that each box contains at least 3 items are {1,2,3}[4,5,6], {1,2,4}[3,5,6], {1,2,5}[3,4,6], {1,2,6}[3,4,5], {1,3,4}[2,5,6], {1,3,5}[2,4,6], {1,3,6}[2,4,5], {1,4,5}[2,3,6], {1,4,6}[2,3,5], {1,5,6}[2,3,4] and the 10 other possibilities where the contents of a pair of boxes are swapped.
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
Peter Bala, Dec 04 2011
STATUS
approved
Number of doubly-surjective functions f:[n]->[3].
+10
2
90, 630, 2940, 11508, 40950, 137610, 445896, 1410552, 4390386, 13514046, 41278068, 125405532, 379557198, 1145747538, 3452182656, 10388002848, 31230066186, 93828607686, 281775226860, 845929656900, 2539047258150, 7619759016090, 22864712861880, 68605412870088
OFFSET
6,1
COMMENTS
Third column of A200091.
Also, a(n) is (i) the number of length-n words on the alphabet A, B, and C with each letter occurring at least twice; (ii) the number of ways to distribute n different toys to 3 different children so that each child gets at least 2 toys; (iii) the number of ways to put n numbered balls into 3 labeled boxes so that each box gets at least 2 balls; (iv) the number of n-digit positive integers consisting only of the digits 1, 2, and 3 with each of these digits appearing at least twice. A doubly-surjective function f has size at least 2 for each pre-image set, that is, |f^-1(y)|>=2 for each element y of the codomain.[Note that a surjective function has |f^-1(y)|>=1.] The triangle A200091 provides the number of doubly-surjective functions f:[n]->[k]. Column 3 of triangle A200091 is a(n).
Sequence A052515 is the number of doubly-surjective functions f:[n]->[2] with exponential generating function (exp(x)-x-1)^2. In general, the number of doubly-surjective functions f:[n]->[k] has exponential generating function (exp(x)-x-1)^k.
FORMULA
a(n) = 3^n-3*2^n-3*n*2^(n-1)+3+3*n+3*n^2.
E.g.f.: (exp(x)-x-1)^3.
From Alois P. Heinz, Apr 10 2013: (Start)
a(n) = 6*A000478(n).
G.f.: -6*(12*x^3-40*x^2+45*x-15)*x^6 / ((3*x-1)*(2*x-1)^2*(x-1)^3).
(End)
EXAMPLE
For n=6 we have a(6)=90 since there are 90 six-digit positive integers using only digits 1, 2, and 3 with each of those digits appearing at least twice. The first 30 of the ninety, namely those with initial digit 1, are given below:
112233, 112323, 112332, 113223, 113232, 113322,
121233, 121323, 121332, 122133, 122313, 122331,
123123, 123132, 123213, 123231, 123312, 123321,
131223, 131232, 131322, 132123, 132132, 132213,
132231, 132312, 132321, 133122, 133212, 133221.
MAPLE
seq(3^n-3*2^n-3*n*2^(n-1)+3+3*n+3*n^2, n=6..40);
MATHEMATICA
With[{nn=40}, Drop[CoefficientList[Series[(Exp[x]-x-1)^3, {x, 0, nn}], x] Range[0, nn]!, 6]] (* Harvey P. Dale, Oct 01 2015 *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace((exp(x)-x-1)^3)) \\ Joerg Arndt, Apr 10 2013
CROSSREFS
Cf. A052515, the number of doubly-surjective functions f:[n]->[2].
KEYWORD
nonn,easy
AUTHOR
Dennis P. Walsh, Apr 09 2013
STATUS
approved
Number of doubly-surjective functions f:[n]->[4].
+10
1
2520, 30240, 226800, 1367520, 7271880, 35692800, 165957792, 742822080, 3234711480, 13803744864, 58021888080, 241116750624, 993313349544, 4064913201216, 16549636147968, 67112688842496, 271323921459096, 1094303232174240, 4405390451382960, 17709538489849440
OFFSET
8,1
COMMENTS
Fourth column of A200091: A200091(n,4)=a(n).
Also, a(n) is (i) the number of length-n words on the alphabet A, B, C, and D with each letter of the alphabet occurring at least twice; (ii) the number of ways to distribute n different toys to 4 children so that each child gets at least two toys; (iii) the number of ways to put n numbered balls into 4 labeled boxes so that each box gets at least two balls; (iv) the number of n-digit positive integers consisting of only digits 1,2,3, and 4 with each of these digits appearing at least twice.
A doubly-surjective function f:D->C is such that the pre-image set f^-1(y) has size at least 2 for each y in C.
Triangle A200091 provides the number of doubly-surjective functions f from a set of size n onto a set of size k. Hence a(n) is column 4 of A200091.
FORMULA
a(n) = 4^n-4*3^n-4*n*3^(n-1)+(9*n+3*n^2)*2^(n-1)+6*2^n-4-8*n-4*n^3;
a(n) = sum(n!/(i!j!k!m!) over <i,j,k,m> such that i,j,k, and m are all at least 2 and i+j+k+m=n.
E.g.f.: (exp(x)-x-1)^4.
a(n) = 24*A058844(n). - Alois P. Heinz, Apr 10 2013
G.f.: 24*x^8*(288*x^6-1560*x^5+3500*x^4-4130*x^3+2625*x^2-840*x+105) / ((x-1)^4*(2*x-1)^3*(3*x-1)^2*(4*x-1)). - Colin Barker, Jun 04 2013
EXAMPLE
a(9) = 30240 since there are 30240 ways to distribute 9 different toys to 4 children so that each child gets at least 2 toys. One child must get 3 toys and the other children get 2 toys each. There are 4 ways to pick the lucky kid. There are C(9,3) ways to choose the 3 toys for the lucky kid. There are 6!/(2!)^3 ways to distribute the remaining 6 toys among the 3 kids. We obtain 4*C(9,3)*6!/8=30240.
MAPLE
seq(eval(diff((exp(x)-x-1)^4, x$n), x=0), n=8..40);
MATHEMATICA
nn=27; Drop[Range[0, nn]! CoefficientList[Series[(Exp[x]-x-1)^4, {x, 0, nn}], x], 8] (* Geoffrey Critzer, Sep 28 2013 *)
PROG
(PARI) x='x+O('x^66); Vec(serlaplace((exp(x)-x-1)^4)) /* Joerg Arndt, Apr 10 2013 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Dennis P. Walsh, Apr 09 2013
STATUS
approved

Search completed in 0.010 seconds