[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a195825 -id:a195825
Displaying 1-10 of 37 results found. page 1 2 3 4
     Sort: relevance | references | number | modified | created      Format: long | short | data
A210843 Level of the n-th plateau of the column k of the square array A195825, when k -> infinity. +20
18
1, 4, 13, 35, 86, 194, 415, 844, 1654, 3133, 5773, 10372, 18240, 31449, 53292, 88873, 146095, 236977, 379746, 601656, 943305, 1464501, 2252961, 3436182, 5198644, 7805248, 11634685, 17224795, 25336141, 37038139, 53828275, 77792869 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Also the first (k+1)/2 terms of this sequence are the levels of the (k+1)/2 plateaus of the column k of A195825, whose lengths are k+1, k-1, k-3, k-5,... 2, if k is odd.
Also the first k/2 terms of this sequence are the levels of the k/2 plateaus of the column k of A195825, whose lengths are k+1, k-1, k-3, k-5,... 3, if k is a positive even number.
For the visualization of the plateaus see the graph of the sequences mentioned in crossrefs section (columns k=1..10 of A195825), for example see the graph of A210964.
Also numbers that are repeated in column k of square array A195825, when k -> infinity.
Note that the definition and the comments related to the square array A195825 mentioned above are also valid for the square array A211970, since both arrays contains the same columns, if k >= 1.
Is this the EULER transform of 4, 3, 3, 3, 3, 3, 3...?
LINKS
FORMULA
From Vaclav Kotesovec, Aug 16 2015: (Start)
a(n) ~ sqrt(2*n)/Pi * A000716(n).
a(n) ~ exp(sqrt(2*n)*Pi) / (8*Pi*n).
(End)
EXAMPLE
Column 1 of A195825 is A000041 which starts: [1, 1], 2, 3, 5, 7, 11... The column contains only one plateau: [1, 1] which has level 1 and length 2. So a(1) = 1.
Column 3 of A195825 is A036820 which starts: [1, 1, 1, 1], 2, 3, [4, 4], 5, 7, 10... The column contains only two plateaus: [1, 1, 1, 1], [4, 4], which have levels 1, 4 and lengths 4, 2. So a(1)= 1 and a(2) = 2.
Column 6 of A195825 is A195850 which starts: [1, 1, 1, 1, 1, 1, 1], 2, 3, [4, 4, 4, 4, 4], 5, 7, 10, 12, [13, 13, 13], 14, 16, 21... The column contains three plateaus: [1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4], [13, 13, 13], which have levels 1, 4, 13 and lengths 7, 5, 3. So a(1) = 1, a(2) = 4 and a(3) = 13.
MATHEMATICA
CoefficientList[Series[1/(1-x)*Product[1/(1-x^k)^3, {k, 1, 50}], {x, 0, 50}], x] (* Vaclav Kotesovec, Aug 16 2015 *)
PROG
(GW-BASIC)
10 'This program gives the 32 terms of DATA section.
20 'Suppose that we have A057077().
30 'In this case g(n) is the n-th generalized 64-gonal number.
40 DEFDBL a, g, w
50 DIM a(32), A057077(2079), g(2080), w(2079)
60 n=0: w(0)=1
70 FOR i = 1 TO 2079
80 FOR j = 1 TO i
90 IF g(j)<=i THEN w(i)=w(i)+A057077(j-1)*w(i-g(j))
100 NEXT j
110 IF i=1 GOTO 130
120 IF w(i-2)=w(i-1) AND w(i-1)<>a(n) THEN n=n+1: a(n)=w(i-1): PRINT a(n);
130 NEXT i
140 END
CROSSREFS
Partial sums of A000716. Column 3 of A210764.
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jun 19 2012
STATUS
approved
A195849 Column 5 of array A195825. Also column 1 of triangle A195839. Also 1 together with the row sums of triangle A195839. +20
17
1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 14, 16, 21, 27, 32, 34, 36, 38, 44, 54, 67, 77, 84, 88, 95, 107, 128, 152, 174, 188, 200, 215, 242, 281, 329, 370, 402, 428, 462, 513, 589, 674, 754, 816, 873, 940, 1041, 1176, 1333, 1477, 1600, 1710, 1845 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,7
COMMENTS
Note that this sequence contains three plateaus: [1, 1, 1, 1, 1, 1], [4, 4, 4, 4], [13, 13]. For more information see A210843. See also other columns of A195825. - Omar E. Pol, Jun 29 2012
Number of partitions of n into parts congruent to 0, 1 or 6 (mod 7). - Ludovic Schwob, Aug 05 2021
LINKS
FORMULA
G.f.: Product_{k>=1} 1/((1 - x^(7*k))*(1 - x^(7*k-1))*(1 - x^(7*k-6))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(2*n/7)) / (8*sin(Pi/7)*n). - Vaclav Kotesovec, Aug 14 2017
MAPLE
A118277 := proc(n)
7*n^2/8+7*n/8-3/16+3*(-1)^n*(1/16+n/8) ;
end proc:
A195839 := proc(n, k)
option remember;
local ks, a, j ;
if A118277(k) > n then
0 ;
elif n <= 5 then
return 1;
elif k = 1 then
a := 0 ;
for j from 1 do
if A118277(j) <= n-1 then
a := a+procname(n-1, j) ;
else
break;
end if;
end do;
return a;
else
ks := A118277(k) ;
(-1)^floor((k-1)/2)*procname(n-ks+1, 1) ;
end if;
end proc:
A195849 := proc(n)
A195839(n+1, 1) ;
end proc:
seq(A195849(n), n=0..60) ; # R. J. Mathar, Oct 08 2011
MATHEMATICA
m = 61;
Product[1/((1 - x^(7k))(1 - x^(7k - 1))(1 - x^(7k - 6))), {k, 1, m}] + O[x]^m // CoefficientList[#, x]& ( Jean-François Alcover, Apr 13 2020, after Ilya Gutkovskiy *)
PROG
(GW-BASIC)' A program with two A-numbers by Omar E. Pol, Jun 10 2012
10 Dim A118277(100), A057077(100), a(100): a(0)=1
20 For n = 1 to 61: For j = 1 to n
30 If A118277(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A118277(j))
40 Next j: Print a(n-1); : Next n
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Oct 07 2011
STATUS
approved
A210964 Column 10 of square array A195825. Also column 1 of triangle A210954. Also 1 together with the row sums of triangle A210954. +20
16
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 13, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 35, 35, 35, 35, 36, 38, 44, 54, 67, 77, 83, 85, 86, 86, 86, 87, 89, 95, 107, 128, 152, 173, 185, 191, 193, 194, 195 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,12
COMMENTS
Note that this sequence contains five plateaus: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4, 4, 4, 4], [13, 13, 13, 13, 13, 13, 13], [35, 35, 35, 35, 35], [86, 86, 86]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..3000 from Vaclav Kotesovec)
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of 1 / f(-x, -x^11) in powers of x where f() is a Ramanujan theta function. - Michael Somos, Jan 10 2015
Partitions of n into parts of the form 12*k, 12*k+1, 12*k+11. - Michael Somos, Jan 10 2015
Euler transform of period 12 sequence [ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, ...]. - Michael Somos, Jan 10 2015
G.f.: Product_{k>0} 1 / ((1 - x^(12*k)) * (1 - x^(12*k - 1)) * (1 - x^(12*k - 11))).
Convolution inverse of A247133.
a(n) ~ sqrt(2)*(1+sqrt(3)) * exp(Pi*sqrt(n/6)) / (8*n). - Vaclav Kotesovec, Nov 08 2015
a(n) = (1/n)*Sum_{k=1..n} A284372(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
a(n) = a(n-1) + a(n-11) - a(n-14) - a(n-34) + + - - (with the convention a(n) = 0 for negative n), where 1, 11, 14, 34, ... is the sequence of generalized 14-gonal numbers A195818. - Peter Bala, Dec 10 2020
MATHEMATICA
nmax = 100; CoefficientList[Series[Product[1 / ((1 - x^(12*k)) * (1 - x^(12*k-1)) * (1 - x^(12*k-11))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 08 2015 *)
PROG
(GW-BASIC)' A program with two A-numbers:
10 Dim A195818(100), A057077(100), a(100): a(0)=1
20 For n = 1 to 67: For j = 1 to n
30 If A195818(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A195818(j))
40 Next j: Print a(n-1); : Next n
50 End
CROSSREFS
Cf. A247133.
KEYWORD
nonn
AUTHOR
Omar E. Pol, Jun 16 2012
STATUS
approved
A195850 Column 6 of array A195825. Also column 1 of triangle A195840. Also 1 together with the row sums of triangle A195840. +20
14
1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 36, 38, 44, 54, 67, 77, 83, 86, 89, 95, 107, 128, 152, 173, 186, 194, 202, 216, 242, 281, 328, 368, 396, 415, 434, 464, 514, 588, 672, 748, 803, 844 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Note that this sequence contains three plateaus: [1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4], [13, 13, 13]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012
Number of partitions of n into parts congruent to 0, 1 or 7 (mod 8). - Peter Bala, Dec 10 2020
LINKS
FORMULA
G.f.: Product_{k>=1} 1/((1 - x^(8*k))*(1 - x^(8*k-1))*(1 - x^(8*k-7))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(n)/2) / (4*sqrt(2-sqrt(2))*n). - Vaclav Kotesovec, Aug 14 2017
a(n) = a(n-1) + a(n-7) - a(n-10) - a(n-22) + + - - (with the convention a(n) = 0 for negative n), where 1, 7, 10, 22, ... is the sequence of generalized 10-gonal numbers A074377. - Peter Bala, Dec 10 2020
PROG
(GW-BASIC)' A program with two A-numbers:
10 Dim A074377(100), A057077(100), a(100): a(0)=1
20 For n = 1 to 60: For j = 1 to n
30 If A074377(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A074377(j))
40 Next j: Print a(n-1); : Next n
50 'Omar E. Pol, Jun 10 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Oct 07 2011
STATUS
approved
A195851 Column 7 of array A195825. Also column 1 of triangle A195841. Also 1 together with the row sums of triangle A195841. +20
14
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 35, 36, 38, 44, 54, 67, 77, 83, 85, 87, 89, 95, 107, 128, 152, 173, 185, 192, 196, 203, 216, 242, 281, 328, 367, 394, 409, 421, 436, 465 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,9
COMMENTS
Note that this sequence contains four plateaus: [1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4], [13, 13, 13, 13], [35, 35]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012
LINKS
FORMULA
G.f.: Product_{k>=1} 1/((1 - x^(9*k))*(1 - x^(9*k-1))*(1 - x^(9*k-8))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(2*n)/3) / (8*sin(Pi/9)*n). - Vaclav Kotesovec, Aug 14 2017
MAPLE
A195160 := proc(n)
(18*n*(n+1)+5*(2*n+1)*(-1)^n-5)/16 ;
end proc:
A195841 := proc(n, k)
option remember;
local ks, a, j ;
if A195160(k) > n then
0 ;
elif n <= 5 then
return 1;
elif k = 1 then
a := 0 ;
for j from 1 do
if A195160(j) <= n-1 then
a := a+procname(n-1, j) ;
else
break;
end if;
end do;
return a;
else
ks := A195160(k) ;
(-1)^floor((k-1)/2)*procname(n-ks+1, 1) ;
end if;
end proc:
A195851 := proc(n)
A195841(n+1, 1) ;
end proc:
seq(A195851(n), n=0..60) ; # R. J. Mathar, Oct 08 2011
PROG
(GW-BASIC)' A program with two A-numbers:
10 Dim A195160(100), A057077(100), a(100): a(0)=1
20 For n = 1 to 61: For j = 1 to n
30 If A195160(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A195160(j))
40 Next j: Print a(n-1); : Next n
50 'Omar E. Pol, Jun 10 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Oct 07 2011
STATUS
approved
A196933 Column 9 of array A195825. Also column 1 of triangle A195843. Also 1 together with the row sums of triangle A195843. +20
14
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 35, 35, 35, 36, 38, 44, 54, 67, 77, 83, 85, 86, 86, 87, 89, 95, 107, 128, 152, 173, 185, 191, 193, 195, 197, 203, 216, 242, 281 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,11
COMMENTS
Note that this sequence contains five plateaus: [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4, 4, 4], [13, 13, 13, 13, 13, 13], [35, 35, 35, 35], [86, 86]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012
LINKS
FORMULA
G.f.: Product_{k>=1} 1/((1 - x^(11*k))*(1 - x^(11*k-1))*(1 - x^(11*k-10))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(2*n/11)) / (8*sin(Pi/11)*n). - Vaclav Kotesovec, Aug 14 2017
MATHEMATICA
T := Product[1/((1 - x^(11*k))*(1 - x^(11*k - 1))*(1 - x^(11*k - 10))), {k, 1, 70}]; a:= CoefficientList[Series[T, {x, 0, 60}], x]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 28 2018 *)
PROG
(GW-BASIC) ' A program with two A-numbers:
10 Dim A195313(100), A057077(100), a(100): a(0)=1
20 For n = 1 to 66: For j = 1 to n
30 If A195313(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A195313(j))
40 Next j: Print a(n-1); : Next n
50 'Omar E. Pol, Jun 10 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Omar E. Pol, Oct 07 2011
EXTENSIONS
More terms from Omar E. Pol, Jun 10 2012
STATUS
approved
A195852 Column 8 of array A195825. Also column 1 of triangle A195842. Also 1 together with the row sums of triangle A195842. +20
13
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 5, 7, 10, 12, 13, 13, 13, 13, 13, 14, 16, 21, 27, 32, 34, 35, 35, 35, 36, 38, 44, 54, 67, 77, 83, 85, 86, 87, 89, 95, 107, 128, 152, 173, 185, 191, 194, 197, 203, 216, 242, 281, 328, 367, 393, 407 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,10
COMMENTS
Note that this sequence contains four plateaus: [1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4, 4, 4], [13, 13, 13, 13, 13], [35, 35, 35]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 29 2012
Number of partitions of n into parts congruent to 0, 1 or 9 (mod 10). - Peter Bala, Dec 10 2020
LINKS
FORMULA
G.f.: Product_{k>=1} 1/((1 - x^(10*k))*(1 - x^(10*k-1))*(1 - x^(10*k-9))). - Ilya Gutkovskiy, Aug 13 2017
a(n) ~ exp(Pi*sqrt(n/5))/(2*(sqrt(5)-1)*n). - Vaclav Kotesovec, Aug 14 2017
a(n) = a(n-1) + a(n-9) - a(n-12) - a(n-28) + + - - (with the convention a(n) = 0 for negative n), where 1, 9, 12, 28, ... is the sequence of generalized 12-gonal numbers A195162. - Peter Bala, Dec 10 2020
PROG
(GW-BASIC)' A program with two A-numbers:
10 Dim A195162(100), A057077(100), a(100): a(0)=1
20 For n = 1 to 64: For j = 1 to n
30 If A195162(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A195162(j))
40 Next j: Print a(n-1); : Next n
50 'Omar E. Pol, Jun 10 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Oct 07 2011
EXTENSIONS
More terms from Omar E. Pol, Jun 10 2012
STATUS
approved
A006950 G.f.: Product_{k>=1} (1 + x^(2*k - 1)) / (1 - x^(2*k)).
(Formerly M0524)
+10
67
1, 1, 1, 2, 3, 4, 5, 7, 10, 13, 16, 21, 28, 35, 43, 55, 70, 86, 105, 130, 161, 196, 236, 287, 350, 420, 501, 602, 722, 858, 1016, 1206, 1431, 1687, 1981, 2331, 2741, 3206, 3740, 4368, 5096, 5922, 6868, 7967, 9233, 10670, 12306, 14193, 16357, 18803, 21581 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Also the number of partitions of n in which all odd parts are distinct. There is no restriction on the even parts. E.g., a(9)=13 because "9 = 8+1 = 7+2 = 6+3 = 6+2+1 = 5+4 = 5+3+1 = 5+2+2 = 4+4+1 = 4+3+2 = 4+2+2+1 = 3+2+2+2 = 2+2+2+2+1". - Noureddine Chair, Feb 03 2005
Number of partitions of n in which each even part occurs with even multiplicity. There is no restriction on the odd parts.
Also the number of partitions of n into parts not congruent to 2 mod 4. - James A. Sellers, Feb 08 2002
Coincides with the sequence of numbers of nilpotent conjugacy classes in the Lie algebras o(n) of skew-symmetric n X n matrices, n=0,1,2,3,... (the cases n=0,1 being degenerate). This sequence, A015128 and A000041 together cover the nilpotent conjugacy classes in the classical A,B,C,D series of Lie algebras. - Alexander Elashvili, Sep 08 2003
Poincaré series [or Poincare series] (or Molien series) for symmetric invariants in F_2(b_1, b_2, ... b_n) ⊗ E(e_1, e_2, ... e_n) with b_i 2-dimensional, e_i one-dimensional and the permutation action of S_n, in the case n=2.
Equals polcoeff inverse of A010054 with alternate signs. - Gary W. Adamson, Mar 15 2010
It appears that this sequence is related to the generalized hexagonal numbers (A000217) in the same way as the partition numbers A000041 are related to the generalized pentagonal numbers A001318. (See the table in comments section of A195825.) Conjecture: this is 1 together with the row sums of triangle A195836, also column 1 of A195836, also column 2 of the square array A195825. - Omar E. Pol, Oct 09 2011
Since this is also column 2 of A195825 so the sequence contains only one plateau [1, 1, 1] of level 1 and length 3. For more information see A210843. - Omar E. Pol, Jun 27 2012
Convolution of A035363 and A000700. - Vaclav Kotesovec, Aug 17 2015
Also the number of ways to stack n triangles in a valley (pointing upwards or downwards depending on row parity). - Seiichi Manyama, Jul 07 2018
REFERENCES
A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 108.
M. D. Hirschhorn, The Power of q, Springer, 2017. See pod, page 297.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz and Vaclav Kotesovec, Table of n, a(n) for n = 0..10000 (terms 0..1000 from Alois P. Heinz)
N. Chair, Partition identities from Partial Supersymmetry, arXiv:hep-th/0409011, 2004.
Brian Drake, Limits of areas under lattice paths, Discrete Math. 309 (2009), no. 12, 3936-3953.
Luca Ferrari, Schröder partitions, Schröder tableaux and weak poset patterns, arXiv:1606.06624 [math.CO], 2016. Mentions this sequence.
Mircea Merca, New relations for the number of partitions with distinct even parts, Journal of Number Theory 176 (July 2017), 1-12.
Victor S. Miller, Counting Matrices that are Squares, arXiv:1606.09299 [math.GR], 2016.
Maxie D. Schmidt, Exact Formulas for the Generalized Sum-of-Divisors Functions, arXiv:1705.03488 [math.NT], 2017. See Example 4.2 p. 13.
Andrew Sills, Rademacher-Type Formulas for Restricted Partition and Overpartition Functions, Ramanujan Journal, 23 (1-3): 253-264, 2010.
L. Wang, New Congruences for Partitions where the Odd Parts are Distinct, J. Int. Seq. 18 (2015) # 15.4.2.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
M. P. Zaletel and R. S. K. Mong, Exact Matrix Product States for Quantum Hall Wave Functions, arXiv preprint arXiv:1208.4862 [cond-mat.str-el], 2012. - From N. J. A. Sloane, Dec 25 2012
FORMULA
a(n) = (1/n)*Sum_{k=1..n} (-1)^(k+1)*A002129(k)*a(n-k), n > 1, a(0)=1. - Vladeta Jovovic, Feb 05 2002
G.f.: 1/Sum_{k>=0} (-x)^(k*(k+1)/2). - Vladeta Jovovic, Sep 22 2002 [corrected by Vaclav Kotesovec, Aug 17 2015]
a(n) = A059777(n-1)+A059777(n), n > 0. - Vladeta Jovovic, Sep 22 2002
G.f.: Product_{m>=1} (1+x^m)^(if A001511(m) > 1, A001511(m)-1 else A001511(m)). - Jon Perry, Apr 15 2005
Expansion of 1 / psi(-x) in powers of x where psi() is a Ramanujan theta function.
Expansion of q^(1/8) * eta(q^2) / (eta(q) * eta(q^4)) in powers of q.
Convolution inverse of A106459. - Michael Somos, Nov 02 2005
G.f.: exp( Sum_{n>=1} [Sum_{d|n} (-1)^(n-d)*d] * x^n/n ). - Paul D. Hanna, Jul 22 2009
a(n) ~ (8*n+1) * cosh(sqrt(8*n-1)*Pi/4) / (16*sqrt(2)*n^2) - sinh(sqrt(8*n-1)*Pi/4) / (2*Pi*n^(3/2)) ~ exp(Pi*sqrt(n/2))/(4*sqrt(2)*n) * (1 - (2/Pi + Pi/16)/sqrt(2*n) + (3/16 + Pi^2/1024)/n). - Vaclav Kotesovec, Aug 17 2015, extended Jan 09 2017
Can be computed recursively by Sum_{j>=0} (-1)^(ceiling(j/2)) a(n - j(j+1)/2) = 0, for n > 0. [Merca, Theorem 4.3] - Eric M. Schmidt, Sep 21 2017
a(n) = A000041(n) - A085642(n), for n >= 1. - Wouter Meeussen, Dec 20 2017
EXAMPLE
G.f. = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 5*x^6 + 7*x^7 + 10*x^8 + 13*x^9 + ...
G.f. = q^-1 + q^7 + q^15 + 2*q^23 + 3*q^31 + 4*q^39 + 5*q^47 + 7*q^55 + 10*q^63 + ...
From Seiichi Manyama, Jul 07 2018: (Start)
n | the ways to stack n triangles in a valley
--+------------------------------------------------------
1 | *---*
| \ /
| *
|
2 | *
| / \
| *---*
| \ /
| *
|
3 | *---* *---*
| / \ / \ / \
| *---* *---*
| \ / \ /
| * *
|
4 | * *
| / \ / \
| *---* *---*---* *---*
| / \ / \ / \ / \ / \
| *---* *---* *---*
| \ / \ / \ /
| * * *
|
5 | *---* * * *---*
| / \ / / \ / \ \ / \
| *---* *---*---* *---*---* *---*
| / \ / \ / \ / \ / \ / \ / \
| *---* *---* *---* *---*
| \ / \ / \ / \ /
| * * * *
|
6 | *
| / \
| *---* *---* * * *---*
| / \ / / \ / / \ / \ \ / \
| *---* *---*---* *---*---* *---*---*
| / \ / \ / \ / \ / \ / \ / \ /
| *---* *---* *---* *---*
| \ / \ / \ / \ /
| * * * *
| *
| / \
| *---*
| \ / \
| *---*
| \ / \
| *---*
| \ /
| *
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+`if`(i>n, 0, b(n-i, i-irem(i, 2)))))
end:
a:= n-> b(n, n):
seq(a(n), n=0..50); # Alois P. Heinz, Jan 06 2013
MATHEMATICA
CoefficientList[ Series[ Product[(1 + x^(2k - 1))/(1 - x^(2k)), {k, 25}], {x, 0, 50}], x] (* Robert G. Wilson v, Jun 28 2012 *)
CoefficientList[Series[x*QPochhammer[-1/x, x^2] / ((1+x)*QPochhammer[x^2, x^2]), {x, 0, 50}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
CoefficientList[Series[2*(-x)^(1/8) / EllipticTheta[2, 0, Sqrt[-x]], {x, 0, 50}], x] (* Vaclav Kotesovec, Aug 17 2015 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i-Mod[i, 2]]]]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Dec 11 2018, after Alois P. Heinz *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, sumdiv(m, d, (-1)^(m-d)*d)*x^m/m)+x*O(x^n)), n)} \\ Paul D. Hanna, Jul 22 2009
(GW-BASIC)' A program with two A-numbers (Note that here A000217 are the generalized hexagonal numbers):
10 Dim A000217(100), A057077(100), a(100): a(0)=1
20 For n = 1 to 51: For j = 1 to n
30 If A000217(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A000217(j))
40 Next j: Print a(n-1); : Next n ' Omar E. Pol, Jun 10 2012
CROSSREFS
See also Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cf. A163203.
KEYWORD
nonn
AUTHOR
EXTENSIONS
G.f. and more terms from Vladeta Jovovic, Feb 05 2002
STATUS
approved
A036820 Number of partitions satisfying (cn(2,5) = cn(3,5) = 0). +10
21
1, 1, 1, 1, 2, 3, 4, 4, 5, 7, 10, 12, 14, 16, 21, 27, 33, 37, 44, 54, 68, 80, 92, 106, 129, 155, 182, 207, 240, 283, 337, 389, 444, 508, 594, 692, 797, 902, 1030, 1187, 1373, 1564, 1770, 2004, 2295, 2624, 2978, 3349, 3783, 4293, 4880, 5501, 6174, 6932, 7830, 8834 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
For a given partition cn(i,n) means the number of its parts equal to i modulo n.
Short: (2=3 := 0).
It appears that this sequence is related to the generalized heptagonal numbers A085787 in the same way as the partition numbers A000041 are related to the generalized pentagonal numbers A001318. (See the table in comments section of A195825.) Conjecture: Column 1 of triangle A195837. Also 1 together with the row sums of triangle A195837. Also column 3 of the square array A195825. - Omar E. Pol, Oct 08 2011
Note that this sequence contains two plateaus: [1, 1, 1, 1] and [4, 4]. For more information see A195825 and A210843. - Omar E. Pol, Jun 23 2012
LINKS
FORMULA
Euler transform of period 5 sequence [1, 0, 0, 1, 1, ...]. - Michael Somos, Feb 09 2012
Expansion of 1 / f(-x, -x^4) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Sep 08 2012
Convolution inverse of A113429. - Michael Somos, Feb 09 2012
G.f.: 1 / (Product_{k>0} (1 - x^(5*k)) * (1 - x^(5*k - 1)) * (1 - x^(5*k - 4))). - Michael Somos, Sep 08 2012
G.f.: 1 / (Sum_{k in Z} (-1)^k * x^(k * (5*k + 3) / 2)). - Michael Somos, Sep 08 2012
a(n) ~ sqrt(1+sqrt(5)) * exp(sqrt(2*n/5)*Pi) / (2^(5/2)*5^(1/4)*n). - Vaclav Kotesovec, Oct 06 2015
a(n) = (1/n)*Sum_{k=1..n} A284361(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + 2*x^4 + 3*x^5 + 4*x^6 + 4*x^7 + 5*x^8 + 7*x^9 + 10*x^10 + ...
G.f. = q^-9 + q^31 + q^71 + q^111 + 2*q^151 + 3*q^191 + 4*q^231 + 4*q^271 + 5*q^311 + ... - Michael Somos, Sep 08 2012
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=0, 1, add(add(d*[1, 1, 0, 0, 1]
[1+irem(d, 5)], d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..60); # Alois P. Heinz, Apr 04 2014
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[ Sum[ d*{1, 1, 0, 0, 1}[[1 + Mod[d, 5]]], {d, Divisors[j]}] * a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Apr 15 2015, after Alois P. Heinz *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( 1 / prod( k=1, (n+4)\5, (1 - x^(5*k - 4)) * (1 - x^(5*k - 1)) * (1 - x^(5*k)), 1 + x * O(x^n)), n))}; /* Michael Somos, Feb 09 2012 */
(GW-BASIC)' A program with two A-numbers:
10 Dim A085787(100), A057077(100), a(100): a(0)=1
20 For n = 1 to 56: For j = 1 to n
30 If A085787(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A085787(j))
40 Next j: Print a(n-1); : Next n ' Omar E. Pol, Jun 10 2012
CROSSREFS
Cf. A113429.
KEYWORD
nonn
AUTHOR
STATUS
approved
A195848 Expansion of 1 / f(-x^1, -x^5) in powers of x where f() is Ramanujan's two-variable theta function. +10
19
1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 5, 7, 10, 12, 13, 14, 16, 21, 27, 32, 35, 38, 44, 54, 67, 78, 86, 94, 107, 128, 153, 176, 194, 213, 241, 282, 331, 376, 415, 456, 512, 590, 680, 767, 845, 928, 1037, 1180, 1345, 1506, 1657, 1818, 2020, 2278, 2570, 2862, 3142, 3442 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,6
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also column 4 of A195825, therefore this sequence contains two plateaus: [1, 1, 1, 1, 1], [4, 4, 4]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 26 2012
The number of partitions of n into parts congruent to 0, 1 or 5 ( mod 6 ). - Peter Bala, Dec 09 2020
LINKS
K. Bringmann, J. Lovejoy, and K. Mahlburg, A partition identity and the universal mock theta function g_2(x;q), Mathematical Research Letters, 23 (2016), 67-80.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of 1 / (psi(x^3) * chi(-x)) in powers of x where psi(), chi() are Ramanujan theta functions. - Michael Somos, Jun 07 2012
Expansion of q^(1/3) * eta(q^2) * eta(q^3) / (eta(q) * eta(q^6)^2) in powers of q. - Michael Somos, Jun 07 2012
Euler transform of period 6 sequence [ 1, 0, 0, 0, 1, 1, ...]. - Michael Somos, Oct 18 2014
Convolution inverse of A089802. - Michael Somos, Oct 18 2014
a(n) ~ exp(Pi*sqrt(n/3))/(4*n). - Vaclav Kotesovec, Nov 08 2015
a(n) = (1/n)*Sum_{k=1..n} A284362(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
From Peter Bala, Dec 09 2020: (Start)
O.g.f.: 1/( Product_{n >= 1} (1 - x^(6*n-5))*(1 - x^(6*n-1))*(1 - x^(6*n)) ).
a(n) = a(n-1) + a(n-5) - a(n-8) - a(n-16) + + - - ... (with the convention a(n) = 0 for negative n), where 1, 5, 8, 16, ... is the sequence of generalized octagonal numbers A001082. (End)
EXAMPLE
G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 4*x^8 + 4*x^9 + 5*x^10 + ...
G.f. = 1/q + q^2 + q^5 + q^8 + q^11 + 2*q^14 + 3*q^17 + 4*q^20 + 4*q^23 + 4*q^26 + ...
MAPLE
A001082 := proc(n)
if type(n, 'even') then
n*(3*n-4)/4 ;
else
(n-1)*(3*n+1)/4 ;
end if;
end proc:
A195838 := proc(n, k)
option remember;
local ks, a, j ;
if A001082(k+1) > n then
0 ;
elif n <= 5 then
return 1;
elif k = 1 then
a := 0 ;
for j from 1 do
if A001082(j+1) <= n-1 then
a := a+procname(n-1, j) ;
else
break;
end if;
end do;
return a;
else
ks := A001082(k+1) ;
(-1)^floor((k-1)/2)*procname(n-ks+1, 1) ;
end if;
end proc:
A195848 := proc(n)
A195838(n+1, 1) ;
end proc:
seq(A195848(n), n=0..60) ; # R. J. Mathar, Oct 07 2011
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^3] / (QPochhammer[ x] QPochhammer[ x^6]^2), {x, 0, n}]; (* Michael Somos, Oct 18 2014 *)
a[ n_] := SeriesCoefficient[ 2 q^(3/8) / (QPochhammer[ q, q^2] EllipticTheta[ 2, 0, q^(3/2)]), {q, 0, n}]; (* Michael Somos, Oct 18 2014 *)
nmax = 60; CoefficientList[Series[Product[(1+x^k) / ((1+x^(3*k)) * (1-x^(6*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 08 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)^2), n))}; /* Michael Somos, Jun 07 2012 */
From Omar E. Pol, Jun 10 2012: (Start)
(GW-BASIC)' A program with two A-numbers:
10 Dim A001082(100), A057077(100), a(100): a(0)=1
20 For n = 1 to 58: For j = 1 to n
30 If A001082(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A001082(j))
40 Next j: Print a(n-1); : Next n (End)
CROSSREFS
Column 1 of triangle A195838. Also 1 together with the row sums of triangle A195838. Column 4 of array A195825.
Cf. A089802.
KEYWORD
nonn,easy
AUTHOR
Omar E. Pol, Sep 24 2011
EXTENSIONS
New sequence name from Michael Somos, Oct 18 2014
STATUS
approved
page 1 2 3 4

Search completed in 0.023 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 29 21:13 EDT 2024. Contains 375518 sequences. (Running on oeis4.)