OFFSET
0,5
COMMENTS
The row polynomials are p(0, x) = 1, and p(n, x) = Eu(x)^n (x-1)^n, for n >= 1, where Eu(x) := x*d/dx is the Euler derivative with respect to x. See A075513. - Wolfdieter Lang, Oct 12 2022
Coefficients of the Sidi polynomials (-1)^n*x*D_{n,0,n}(x), for n >= 0, where D_{k,n,m}(z) is given in Theorem 4.2., p. 862, of Sidi [1980]. - Wolfdieter Lang, Apr 10 2023
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1326
Avram Sidi, Numerical Quadrature and Nonlinear Sequence Transformations; Unified Rules for Efficient Computation of Integrals with Algebraic and Logarithmic Endpoint Singularities, Math. Comp., 35 (1980), 851-874.
FORMULA
Sum_{k=0..n} T(n,k) = n!.
Sum_{k=0..n} |T(n,k)| = A072034(n).
Sum_{n>=0} Sum_{k=0..n} T(n,k) x^k y^n/n! = 1/(1 + W(-x*y*exp(-y)) where W is the Lambert W function. - Robert Israel, Dec 16 2015
T(n,n) = A000312(n). - Peter Luschny, Dec 17 2015
T(n, k+1) = n * A075513(n, k) if n > 0. - Michael Somos, May 13 2018
EXAMPLE
[1]
[0, 1]
[0, -2, 4]
[0, 3, -24, 27]
[0, -4, 96, -324, 256]
[0, 5, -320, 2430, -5120, 3125]
[0, -6, 960, -14580, 61440, -93750, 46656]
[0, 7, -2688, 76545, -573440, 1640625, -1959552, 823543]
MAPLE
seq(seq((-1)^(n-k)*binomial(n, k)*k^n, k=0..n), n=0..8);
T_row := proc(n) (-1)^n*(1-exp(x))^n/n!; diff(%, [x$n]); subs(exp(x)=t, n!*expand(%, x)); CoefficientList(%, t) end: seq(print(T_row(n)), n=0..7);
MATHEMATICA
Flatten@Table[(-1)^(n - k) Binomial[n, k] k^n, {n, 0 , 10}, {k, 0, n}] (* G. C. Greubel, Dec 17 2015 *)
KEYWORD
AUTHOR
Peter Luschny, Jun 09 2015
STATUS
approved