[go: up one dir, main page]

login
Search: a140513 -id:a140513
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sums of two distinct powers of 2.
+10
73
3, 5, 6, 9, 10, 12, 17, 18, 20, 24, 33, 34, 36, 40, 48, 65, 66, 68, 72, 80, 96, 129, 130, 132, 136, 144, 160, 192, 257, 258, 260, 264, 272, 288, 320, 384, 513, 514, 516, 520, 528, 544, 576, 640, 768, 1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2049, 2050, 2052, 2056, 2064, 2080, 2112, 2176, 2304, 2560, 3072
OFFSET
1,1
COMMENTS
Appears to give all k such that 8 is the highest power of 2 dividing A005148(k). - Benoit Cloitre, Jun 22 2002
Seen as a triangle read by rows, T(n,k) = 2^(k-1) + 2^n, 1 <= k <= n, the sum of the n-th row equals A087323(n). - Reinhard Zumkeller, Jun 24 2009
Numbers whose base-2 sum of digits is 2. - Tom Edgar, Aug 31 2013
All odd terms are A000051. - Robert G. Wilson v, Jan 03 2014
A239708 holds the subsequence of terms m such that m - 1 is prime. - Hieronymus Fischer, Apr 20 2014
LINKS
T. D. Noe and Hieronymus Fischer, Table of n, a(n) for n = 1..10000 [terms 1..1000 from T. D. Noe]
Michael Beeler, R. William Gosper, and Richard Schroeppel, HAKMEM, MIT Artificial Intelligence Laboratory report AIM-239, February 1972. Item 175 page 81 by Gosper for iterating. Also HTML transcription.
FORMULA
a(n) = 2^trinv(n-1) + 2^((n-1)-((trinv(n-1)*(trinv(n-1)-1))/2)), i.e., 2^A002024(n)+2^A002262(n-1). - Antti Karttunen
a(n) = A059268(n-1) + A140513(n-1). A000120(a(n)) = 2. Complement of A161989. A151774(a(n)) = 1. - Reinhard Zumkeller, Jun 24 2009
A073267(a(n)) = 2. - Reinhard Zumkeller, Mar 07 2012
Start with A000051. If n is in sequence, then so is 2n. - Ralf Stephan, Aug 16 2013
a(n) = A057168(a(n-1)) for n>1 and a(1) = 3. - Marc LeBrun, Jan 01 2014
From Hieronymus Fischer, Apr 20 2014: (Start)
Formulas for a general parameter b according to a(n) = b^i + b^j, i>j>=0; b = 2 for this sequence.
a(n) = b^i + b^j, where i = floor((sqrt(8n - 1) + 1)/2), j = n - 1 - i*(i - 1)/2 [for a Smalltalk implementation see Prog section, method distinctPowersOf: b (2 versions)].
a(A000217(n)) = (b + 1)*b^(n-1) = b^n + b^(n-1).
a(A000217(n)+1) = 1 + b^(n+1).
a(n + 1 + floor((sqrt(8n - 1) + 1)/2)) = b*a(n).
a(n + 1 + floor(log_b(a(n)))) = b*a(n).
a(n + 1) = b^2/(b+1) * a(n) + 1, if n is a triangular number (s. A000217).
a(n + 1) = b*a(n) + (1-b)* b^floor((sqrt(8n - 1) + 1)/2), if n is not a triangular number.
The next term can also be calculated without using the index n. Let m be a term and i = floor(log_b(m)), then:
a(n + 1) = b*m + (1-b)* b^i, if floor(log_b(m/(b+1))) + 1 < i,
a(n + 1) = b^2/(b+1) * m + 1, if floor(log_b(m/(b+1))) + 1 = i.
Partial sum:
Sum_{k=1..n} a(k) = (((b-1)*(j+1)+i-1)*b^(i-j) + b)*b^j - i)/(b-1), where i = floor((sqrt(8n - 1) + 1)/2), j = n - 1 - i*(i - 1)/2.
Inverse:
For each sequence term m, the index n such that a(n) = m is determined by n := i*(i-1)/2 + j + 1, where i := floor(log_b(m)), j := floor(log_b(m - b^floor(log_b(m)))) [for a Smalltalk implementation see Prog section, method invertedDistinctPowersOf: b].
Inequalities:
a(n) <= (b+1)/b * b^floor(sqrt(2n)+1/2), equality holds for triangular numbers.
a(n) > b^floor(sqrt(2n)+1/2).
a(n) < b^sqrt(2n)*sqrt(b).
a(n) > b^sqrt(2n)/sqrt(b).
Asymptotic behavior:
lim sup a(n)/b^sqrt(2n) = sqrt(b).
lim inf a(n)/b^sqrt(2n) = 1/sqrt(b).
lim sup a(n)/b^(floor(sqrt(2n))) = b.
lim inf a(n)/b^(floor(sqrt(2n))) = 1.
lim sup a(n)/b^(floor(sqrt(2n)+1/2)) = (b+1)/b.
lim inf a(n)/b^(floor(sqrt(2n)+1/2)) = 1.
(End)
Sum_{n>=1} 1/a(n) = A179951. - Amiram Eldar, Oct 06 2020
EXAMPLE
From Hieronymus Fischer, Apr 27 2014: (Start)
a(1) = 3, since 2 = 2^1 + 2^0.
a(5) = 10, since 10 = 2^3 + 2^1.
a(10^2) = 16640
a(10^3) = 35184372089344
a(10^4) = 2788273714550169769618891533295908724670464 = 2.788273714550...*10^42
a(10^5) = 3.6341936214780344527466190...*10^134
a(10^6) = 4.5332938264998904048012398...*10^425
a(10^7) = 1.6074616084721302346802429...*10^1346
a(10^8) = 1.4662184497310967196301632...*10^4257
a(10^9) = 2.3037539289782230932863807...*10^13462
a(10^10) = 9.1836811272250798973464436...*10^42571
(End)
MAPLE
a:= n-> (i-> 2^i+2^(n-1-i*(i-1)/2))(floor((sqrt(8*n-1)+1)/2)):
seq(a(n), n=1..100); # Alois P. Heinz, Feb 01 2022
MATHEMATICA
Select[ Range[ 1056 ], (Count[ IntegerDigits[ #, 2 ], 1 ]==2)& ]
Union[Total/@Subsets[2^Range[0, 10], {2}]] (* Harvey P. Dale, Mar 04 2012 *)
PROG
(PARI) for(m=1, 9, for(n=0, m-1, print1(2^m+2^n", "))) \\ Charles R Greathouse IV, Sep 09 2011
(PARI) is(n)=hammingweight(n)==2 \\ Charles R Greathouse IV, Mar 03 2014
(PARI) for(n=0, 10^5, if(hammingweight(n)==2, print1(n, ", "))); \\ Joerg Arndt, Mar 04 2014
(Haskell)
a018900 n = a018900_list !! (n-1)
a018900_list = elemIndices 2 a073267_list -- Reinhard Zumkeller, Mar 07 2012
(C)
unsigned hakmem175(unsigned x) {
unsigned s, o, r;
s = x & -x; r = x + s;
o = x ^ r; o = (o >> 2) / s;
return r | o;
}
unsigned A018900(int n) {
if (n == 1) return 3;
return hakmem175(A018900(n - 1));
} // Peter Luschny, Jan 01 2014
(Smalltalk)
distinctPowersOf: b
"Version 1: Answers the n-th number of the form b^i + b^j, i>j>=0, where n is the receiver.
b > 1 (b = 2, for this sequence).
Usage: n distinctPowersOf: 2
Answer: a(n)"
| n i j |
n := self.
i := (8*n - 1) sqrtTruncated + 1 // 2.
j := n - (i*(i - 1)/2) - 1.
^(b raisedToInteger: i) + (b raisedToInteger: j)
[by Hieronymus Fischer, Apr 20 2014]
------------
(Smalltalk)
distinctPowersOf: b
"Version 2: Answers an array which holds the first n numbers of the form b^i + b^j, i>j>=0, where n is the receiver. b > 1 (b = 2, for this sequence).
Usage: n distinctPowersOf: 2
Answer: #(3 5 6 9 10 12 ...) [first n terms]"
| k p q terms |
terms := OrderedCollection new.
k := 0.
p := b.
q := 1.
[k < self] whileTrue:
[[q < p and: [k < self]] whileTrue:
[k := k + 1.
terms add: p + q.
q := b * q].
p := b * p.
q := 1].
^terms as Array
[by Hieronymus Fischer, Apr 20 2014]
------------
(Smalltalk)
floorDistinctPowersOf: b
"Answers an array which holds all the numbers b^i + b^j < n, i>j>=0, where n is the receiver.
b > 1 (b = 2, for this sequence).
Usage: n floorDistinctPowersOf: 2
Answer: #(3 5 6 9 10 12 ...) [all terms < n]"
| a n p q terms |
terms := OrderedCollection new.
n := self.
p := b.
q := 1.
a := p + q.
[a < n] whileTrue:
[[q < p and: [a < n]] whileTrue:
[terms add: a.
q := b * q.
a := p + q].
p := b * p.
q := 1.
a := p + q].
^terms as Array
[by Hieronymus Fischer, Apr 20 2014]
------------
(Smalltalk)
invertedDistinctPowersOf: b
"Given a number m which is a distinct power of b, this method answers the index n such that there are uniquely defined i>j>=0 for which b^i + b^j = m, where m is the receiver; b > 1 (b = 2, for this sequence).
Usage: m invertedDistinctPowersOf: 2
Answer: n such that a(n) = m, or, if no such n exists, min (k | a(k) >= m)"
| n i j k m |
m := self.
i := m integerFloorLog: b.
j := m - (b raisedToInteger: i) integerFloorLog: b.
n := i * (i - 1) / 2 + 1 + j.
^n
[by Hieronymus Fischer, Apr 20 2014]
(Python)
print([n for n in range(1, 3001) if bin(n)[2:].count("1")==2]) # Indranil Ghosh, Jun 03 2017
(Python)
A018900_list = [2**a+2**b for a in range(1, 10) for b in range(a)] # Chai Wah Wu, Jan 24 2021
CROSSREFS
Cf. A000079, A014311, A014312, A014313, A023688, A023689, A023690, A023691 (Hamming weight = 1, 3, 4, ..., 9).
Sum of base-b digits equal b: A226636 (b = 3), A226969 (b = 4), A227062 (b = 5), A227080 (b = 6), A227092 (b = 7), A227095 (b = 8), A227238 (b = 9), A052224 (b = 10). [M. F. Hasler, Dec 23 2016]
KEYWORD
nonn,easy,nice,tabl,look
AUTHOR
Jonn Dalton (jdalton(AT)vnet.ibm.com), Dec 11 1996
EXTENSIONS
Edited by M. F. Hasler, Dec 23 2016
STATUS
approved
Triangle read by rows: T(n,k) = 2^n + 2^k, 0 <= k <= n.
+10
25
2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 32, 33, 34, 36, 40, 48, 64, 65, 66, 68, 72, 80, 96, 128, 129, 130, 132, 136, 144, 160, 192, 256, 257, 258, 260, 264, 272, 288, 320, 384, 512, 513, 514, 516, 520, 528, 544, 576, 640, 768, 1024, 1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048
OFFSET
0,1
COMMENTS
Essentially the same as A048645. - T. D. Noe, Mar 28 2011
FORMULA
1 <= A000120(T(n,k)) <= 2.
For n>0, 0<=k<n: T(n,k) = A048645(n+1,k+2) and T(n,n) = A048645(n+2,1).
Row sums give A006589(n).
Central terms give A161168(n).
T(2*n+1,n) = A007582(n+1).
T(2*n+1,n+1) = A028403(n+1).
T(n,k) = A140513(n,k) - A173787(n,k), 0<=k<=n.
T(n,k) = A059268(n+1,k+1) + A173787(n,k), 0<k<=n.
T(n,k) * A173787(n,k) = A173787(2*n,2*k), 0<=k<=n.
T(n,0) = A000051(n).
T(n,1) = A052548(n) for n>0.
T(n,2) = A140504(n) for n>1.
T(n,3) = A175161(n-3) for n>2.
T(n,4) = A175162(n-4) for n>3.
T(n,5) = A175163(n-5) for n>4.
T(n,n-4) = A110287(n-4) for n>3.
T(n,n-3) = A005010(n-3) for n>2.
T(n,n-2) = A020714(n-2) for n>1.
T(n,n-1) = A007283(n-1) for n>0.
T(n,n) = 2*A000079(n).
EXAMPLE
Triangle begins as:
2;
3, 4;
5, 6, 8;
9, 10, 12, 16;
17, 18, 20, 24, 32;
33, 34, 36, 40, 48, 64;
65, 66, 68, 72, 80, 96, 128;
129, 130, 132, 136, 144, 160, 192, 256;
257, 258, 260, 264, 272, 288, 320, 384, 512;
513, 514, 516, 520, 528, 544, 576, 640, 768, 1024;
1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048;
MATHEMATICA
Flatten[Table[2^n + 2^m, {n, 0, 10}, {m, 0, n}]] (* T. D. Noe, Jun 18 2013 *)
PROG
(Magma) [2^n + 2^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 07 2021
(Sage) flatten([[2^n + 2^k for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 07 2021
(PARI) A173786(n) = { my(c = (sqrtint(8*n + 1) - 1) \ 2); 1 << c + 1 << (n - binomial(c + 1, 2)); }; \\ Antti Karttunen, Feb 29 2024, after David A. Corneth's PARI-program in A048645
CROSSREFS
Cf. also A087112, A370121.
KEYWORD
nonn,tabl,easy
AUTHOR
Reinhard Zumkeller, Feb 28 2010
EXTENSIONS
Typo in first comment line fixed by Reinhard Zumkeller, Mar 07 2010
STATUS
approved
Concatenate subsequences [2^0, 2^1, ..., 2^n] for n = 0, 1, 2, ...
+10
24
1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 32, 1, 2, 4, 8, 16, 32, 64, 1, 2, 4, 8, 16, 32, 64, 128, 1, 2, 4, 8, 16, 32, 64, 128, 256, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048
OFFSET
0,3
COMMENTS
Triangular array T(n,k) read by rows, where T(n,k) = i!*j! times coefficient of x^n*y^k in exp(x+2y).
a(n) = A018900(n+1) - A140513(n). - Reinhard Zumkeller, Jun 24 2009
T(n,k) = A173786(n-1,k-1) - A173787(n-1,k-1), 0<k<=n. - Reinhard Zumkeller, Feb 28 2010
T(n,k) is the number of subsets of {0,1,...,n} whose largest element is k. To see this, let A be any subset of the 2^k subsets of {0,1,...,k-1}. Then there are 2^k subsets of the form (A U {k}). See example below. - Dennis P. Walsh, Nov 27 2011
Sequence B is called a reluctant sequence of sequence A, if B is triangle array read by rows: row number k coincides with first k elements. A059268 is reluctant sequence of sequence A000079. - Boris Putievskiy, Dec 17 2012
LINKS
FORMULA
E.g.f.: exp(x+2*y) (T coordinates).
T(n,k) = 2^k. - Reinhard Zumkeller, Jan 29 2010
As a linear array, the sequence is a(n) = 2^(n-1-t*(t+1)/2), where t = floor((-1+sqrt(8*n-7))/2), n>=1. - Boris Putievskiy, Dec 17 2012
As a linear array, the sequence is a(n) = 2^(n-1-t*(t+1)/2), where t = floor(sqrt(2*n)-1/2), n>=1. - Zhining Yang, Jun 09 2017
EXAMPLE
T(4,3)=8 since there are 8 subsets of {0,1,2,3,4} whose largest element is 3, namely, {3}, {0,3}, {1,3}, {2,3}, {0,1,3}, {0,2,3}, {1,2,3}, and {0,1,2,3}.
Triangle starts:
1;
1, 2;
1, 2, 4;
1, 2, 4, 8;
1, 2, 4, 8, 16;
1, 2, 4, 8, 16, 32;
...
MAPLE
seq(seq(2^k, k=0..n), n=0..10);
MATHEMATICA
Table[2^k, {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 10 2013 *)
PROG
(Haskell)
a059268 n k = a059268_tabl !! n !! k
a059268_row n = a059268_tabl !! n
a059268_tabl = iterate (scanl (+) 1) [1]
-- Reinhard Zumkeller, Apr 18 2013, Jul 05 2012
CROSSREFS
Cf. A140531.
Cf. A000079.
Cf. A131816.
Row sums give A126646.
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Jan 23 2001
EXTENSIONS
Formula corrected by Reinhard Zumkeller, Feb 23 2010
STATUS
approved
Triangle read by rows: T(n,k) = 2^n - 2^k, 0 <= k <= n.
+10
20
0, 1, 0, 3, 2, 0, 7, 6, 4, 0, 15, 14, 12, 8, 0, 31, 30, 28, 24, 16, 0, 63, 62, 60, 56, 48, 32, 0, 127, 126, 124, 120, 112, 96, 64, 0, 255, 254, 252, 248, 240, 224, 192, 128, 0, 511, 510, 508, 504, 496, 480, 448, 384, 256, 0, 1023, 1022, 1020, 1016, 1008, 992, 960, 896, 768, 512, 0
OFFSET
0,4
FORMULA
A000120(T(n,k)) = A025581(n,k).
Row sums give A000337.
Central terms give A020522.
T(2*n+1, n) = A006516(n+1).
T(2*n+3, n+2) = A059153(n).
T(n, k) = A140513(n,k) - A173786(n,k), 0 <= k <= n.
T(n, k) = A173786(n,k) - A059268(n+1,k+1), 0 < k <= n.
T(2*n, 2*k) = T(n,k) * A173786(n,k), 0 <= k <= n.
T(n, 0) = A000225(n).
T(n, 1) = A000918(n) for n>0.
T(n, 2) = A028399(n) for n>1.
T(n, 3) = A159741(n-3) for n>3.
T(n, 4) = A175164(n-4) for n>4.
T(n, 5) = A175165(n-5) for n>5.
T(n, 6) = A175166(n-6) for n>6.
T(n, n-4) = A110286(n-4) for n>3.
T(n, n-3) = A005009(n-3) for n>2.
T(n, n-2) = A007283(n-2) for n>1.
T(n, n-1) = A000079(n-1) for n>0.
T(n, n) = A000004(n).
EXAMPLE
Triangle begins as:
0;
1, 0;
3, 2, 0;
7, 6, 4, 0;
15, 14, 12, 8, 0;
31, 30, 28, 24, 16, 0;
MATHEMATICA
Table[2^n -2^k, {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 13 2021 *)
PROG
(Magma) [2^n -2^k: k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 13 2021
(Sage) flatten([[2^n -2^k for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 13 2021
KEYWORD
nonn,easy,tabl
AUTHOR
Reinhard Zumkeller, Feb 28 2010
STATUS
approved
Triangle read by rows: T(n,k) = Sum_{j=0..n} 2^(n-j)*binomial(j,k) for n >= 0 and 0 <= k <= n; also, Riordan array (1/((1-x)*(1-2*x)), x/(1-x)).
+10
5
1, 3, 1, 7, 4, 1, 15, 11, 5, 1, 31, 26, 16, 6, 1, 63, 57, 42, 22, 7, 1, 127, 120, 99, 64, 29, 8, 1, 255, 247, 219, 163, 93, 37, 9, 1, 511, 502, 466, 382, 256, 130, 46, 10, 1, 1023, 1013, 968, 848, 638, 386, 176, 56, 11, 1, 2047, 2036, 1981, 1816, 1486, 1024, 562, 232, 67
OFFSET
0,2
COMMENTS
This array (A104709) is the mirror of the fission, A054143, of the polynomial sequence ((x+1)^n: n >= 0) by the polynomial sequence (q(n,x): n >= 0) given by q(n,x) = x^n + x^(n-1) + ... + x + 1. See A193842 for the definition of fission. - Clark Kimberling, Aug 07 2011
The elements of the matrix inverse appear to be T^(-1)(n,k) = (-1)^(n+k)*A110813(n,k) assuming the same offset in both triangles. - R. J. Mathar, Mar 15 2013
From Paul Curtz, Jun 12 2019: (Start)
Numerators of the triangle [Curtz, page 15, triangle (E)]:
1/2;
3/4, 1/4;
7/8, 4/8, 1/8;
15/16, 11/16, 5/16, 1/16;
31/32, 26/31, 16/32, 6/32, 1/32;
63/64, 57/64, 42/64, 22/64, 7/64, 1/64;
...
Denominators - Numerators: Triangle A054143.
1;
1, 3;
1, 4, 7;
1, 5, 11, 15;
...
(E) is a transform which accelerates the convergence of series.
For log(2) = 1 - 1/2 + 1/3 - 1/4 ... = 0.6931..., we have
1*(1/2) = 1/2,
1*(3/4) - (1/2)*(1/4) = 5/8,
1*(7/8) - (1/2)*(4/8) + (1/3)*(1/8) = 2/3,
1*(15/16) - (1/2)*(11/16) + (1/3)*(5/16) - (1/4)*1/16 = 131/192,
...
This is A068566/A068565. (End)
LINKS
Paul Curtz, Accélération de la convergence de certaines séries alternées à l'aide des fonctions de sommation, Thèse de 3ème Cycle d'Analyse Numérique, Faculté des Sciences de l'Université de Paris, 4 mai 1965.
Clark Kimberling, Fusion, Fission, and Factors, Fib. Q., 52(3) (2014), 195-202.
FORMULA
Begin with A055248 as a triangle, delete leftmost column.
The Riordan array factors as (1/(1-2*x), x)*(1/(1-x), x/(1-x)) - the sequence array for 2^n times Pascal's triangle. - Paul Barry, Aug 05 2005
T(n,k) = Sum_{j=0..n-k} C(n-j, k)*2^j. - Paul Barry, Jan 12 2006
T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - 2*T(n-2,k) - 2*T(n-2,k-1), T(0,0) = 1, T(n,k) = 0 if k < 0 or if k > n. - Philippe Deléham, Nov 30 2013
Working with an offset of 0, we have exp(x) * (e.g.f. for row n) = (e.g.f. for diagonal n). For example, for n = 3 we have exp(x)*(15 + 11*x + 5*x^2/2! + x^3/3!) = 15 + 26*x + 42*x^2/2! + 64*x^3/3! + 93*x^4/4! + .... The same property holds more generally for Riordan arrays of the form (f(x), x/(1 - x)). - Peter Bala, Dec 21 2014
From Petros Hadjicostas, Jun 05 2020: (Start)
Bivariate o.g.f.: A(x,y) = Sum_{n,k >= 0} T(n,k)*x^n*y^k = 1/(1 - 3*x - x*y + 2*x^2 + 2*x^2*y) = 1/((1 - 2*x)*(1 - x*(y+1))).
The o.g.f. of the n-th row is (2^(n+1) - (1 + y)^(n+1))/(1 - y).
Let B(x,y) be the bivariate o.g.f. of triangular array A054143. Because A054143 is the mirror image of the current array, we have A(x,y) = B(x*y, 1/y) and B(x,y) = A(x*y, 1/y). This makes it easy to identify lower diagonals of the array.
For example, if we want to identify the second lower diagonal of the array (i.e., 7, 11, 16, 22, ...), we take the 2nd derivative of B(x,y) with respect to y, set y = 0, and divide by 2!. (Note that columns in A054143 start at k = 0.) We get the g.f. x^2*(7 - 10*x + 4*x^2)/(1 - x)^3.
It is then easy to derive that T(n,n-2) = A000124(n+1) = (n+1)*(n+2)/2 + 1 for n >= 2 (by ignoring the first three terms of A000124). Of course, in the current case, it is much easier to use the formula for T(n,k) to find T(n,n-2). (End)
T(n,0) = 2^(n+1) - 1 for n >= 0; T(n,k) = T(n-1,k) + T(n-1,k-1) for 1 <= k <= n. - Peter Bala, Jan 30 2023
T(n,1) = 2^(n+1) - n - 2 = A000295(n+1) for n >= 1. - Bernard Schott, Feb 22 2023
EXAMPLE
Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
1;
3, 1;
7, 4, 1;
15, 11, 5, 1;
31, 26, 16, 6, 1;
63, 57, 42, 22, 7, 1;
...
MAPLE
A104709_row := proc(n) add(add(binomial(n, n-i)*x^(n-k-1), i=0..k), k=0..n-1);
coeffs(sort(%)) end; seq(print(A104709_row(n)), n=1..6); # Peter Luschny, Sep 29 2011
MATHEMATICA
z = 10;
p[n_, x_] := (x + 1)^n;
q[0, x_] := 1; q[n_, x_] := x*q[n - 1, x] + 1;
p1[n_, k_] := Coefficient[p[n, x], x^k];
p1[n_, 0] := p[n, x] /. x -> 0;
d[n_, x_] := Sum[p1[n, k]*q[n - 1 - k, x], {k, 0, n - 1}]
h[n_] := CoefficientList[d[n, x], {x}]
TableForm[Table[Reverse[h[n]], {n, 0, z}]]
Flatten[Table[Reverse[h[n]], {n, -1, z}]] (* A054143 *)
TableForm[Table[h[n], {n, 0, z}]]
Flatten[Table[h[n], {n, -1, z}]] (* A104709 *)
(* Clark Kimberling, Aug 07 2011 *)
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Mar 19 2005
EXTENSIONS
Name edited and offset changed by Petros Hadjicostas, Jun 04 2020
STATUS
approved
Triangle A(k,n) = (-2)^k+2^n read by rows.
+10
1
2, -1, 0, 5, 6, 8, -7, -6, -4, 0, 17, 18, 20, 24, 32, -31, -30, -28, -24, -16, 0, 65, 66, 68, 72, 80, 96, 128, -127, -126, -124, -120, -112, -96, -64, 0, 257, 258, 260, 264, 272, 288, 320, 384, 512, -511, -510, -508, -504, -496, -480, -448, -384, -256, 0, 1025, 1026, 1028, 1032
OFFSET
0,1
COMMENTS
The flattened sequence a(A000217(k)+j)=A(k,j) obeys a(n+1)-2a(n)= -5, 2, 5, -4, -4, -23, 8, 8, 8, 17, -16, -16, -16, -16, -95, ..., which is a dispersion of 2, -4, -4, 8, 8, 8, ... (a signed version of A140513) with -5, 5, -23, 17, -95, 65,... The latter sequence is A(k,0)-2*A(k-1,k-1), an alternation of the negative of A140529 with each second element of A000051.
LINKS
Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, Finding structure in sequences of real numbers via graph theory: a problem list, arXiv:2012.04625, Dec 08, 2020
FORMULA
A(k,n) = A000079(n)+A122803(k).
EXAMPLE
Rows starting at k=0: (2), (-1,0); (5, 6, 8); (-7,-6,-4,0); (17,18,20,24,32);...
KEYWORD
sign,tabl
AUTHOR
Paul Curtz, Jul 06 2008
EXTENSIONS
Edited by R. J. Mathar, Jul 08 2008
STATUS
approved
Triangle T(n,k) = (-2)^n*(-1)^k if k<n; T(n,n) = (-1)^(n+1)*A001045(n+1).
+10
0
1, -2, -1, 4, -4, 3, -8, 8, -8, -5, 16, -16, 16, -16, 11, -32, 32, -32, 32, -32, -21, 64, -64, 64, -64, 64, -64, 43, -128, 128, -128, 128, -128, 128, -128, -85, 256, -256, 256, -256, 256, -256, 256, -256, 171, -512, 512, -512, 512, -512, 512, -512, 512, -512, -341, 1024, -1024, 1024, -1024, 1024
OFFSET
0,2
COMMENTS
The sequence appears if the values b(n+1)-2*b(n) are computed from the (flattened) sequence b(.)=A140944.
Reading the triangle by rows, taking absolute values and removing duplicates we obtain A112387.
FORMULA
T(n,k) = A140944(n,k+1)-2*A140944(n,k), k<n.
T(n,n) = A140944(n+1,0) -2*A140944(n,n).
EXAMPLE
1;
-2,-1;
4,-4,3;
-8,8,-8,-5;
16,-16,16,-16,11;
-32,32,-32,32,-32,-21;
64,-64,64,-64,64,-64,43;
-128,128,-128,128,-128,128,-128,-85;
MATHEMATICA
(* A = A140944 *) A[0, 0] = 0; A[1, 0] = A[0, 1] = 1; A[0, k_] := A[0, k] = A[0, k-1] + 2*A[0, k-2]; A[n_, n_] = 0; A[n_, k_] := A[n, k] = A[n-1, k+1] - A[n-1, k]; T[n_, n_] := T[n, n] = A[n+1, 0] - 2*A[n, n]; T[n_, k_] := T[n, k] = A[n, k+1] - 2*A[n, k]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Dec 17 2014 *)
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Paul Curtz, Jul 24 2008
EXTENSIONS
Edited by R. J. Mathar, Jul 06 2011
STATUS
approved

Search completed in 0.020 seconds