[go: up one dir, main page]

login
A118413
Triangle read by rows: T(n,k) = (2*n-1)*2^(k-1), 0<k<=n.
17
1, 3, 6, 5, 10, 20, 7, 14, 28, 56, 9, 18, 36, 72, 144, 11, 22, 44, 88, 176, 352, 13, 26, 52, 104, 208, 416, 832, 15, 30, 60, 120, 240, 480, 960, 1920, 17, 34, 68, 136, 272, 544, 1088, 2176, 4352, 19, 38, 76, 152, 304, 608, 1216, 2432, 4864, 9728, 21, 42, 84, 168
OFFSET
1,2
COMMENTS
Central terms give A118415; row sums give A118414;
T(n,1) = A005408(n-1);
T(n,2) = A016825(n-1) for n>1;
T(n,3) = A017113(n-1) for n>2;
T(n,4) = A051062(n-1) for n>3;
T(n,n-2) = A052951(n-1) for n>2;
T(n,n) = A014480(n-1) = A118416(n,n);
A001511(T(n,k)) = A002260(n,k);
A003602(T(n,k)) = A002024(n,k).
G.f.: x*y*(1 + x + 2*x*y - 6*x^2*y)/((1 - x)^2*(1 - 2*x*y)^2). - Stefano Spezia, Dec 22 2024
EXAMPLE
1
3 6
5 10 20
7 14 28 56
9 18 36 72 144
11 22 44 88 176 352
13 26 52 104 208 416 832
15 30 60 120 240 480 960 1920
17 34 68 136 272 544 1088 2176 4352
19 38 76 152 304 608 1216 2432 4864 9728
...
MATHEMATICA
Select[Flatten[Table[(2n-1)2^(k-1), {n, 20}, {k, 0, n}]], IntegerQ] (* Harvey P. Dale, Jan 17 2024 *)
KEYWORD
nonn,tabl,easy
AUTHOR
Reinhard Zumkeller, Apr 27 2006
STATUS
approved