[go: up one dir, main page]

login
Search: a132302 -id:a132302
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of q * psi(-q^9) / psi(-q) in powers of q where psi() is a Ramanujan theta function.
+10
7
1, 1, 1, 2, 3, 4, 5, 7, 10, 12, 15, 20, 26, 32, 39, 50, 63, 76, 92, 114, 140, 168, 201, 244, 295, 350, 415, 496, 591, 696, 818, 967, 1140, 1332, 1554, 1820, 2126, 2468, 2861, 3324, 3855, 4448, 5126, 5916, 6816, 7824, 8970, 10292, 11793, 13471, 15372, 17548
OFFSET
1,4
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Andrew Sills, Towards an Automation of the Circle Method, Gems in Experimental Mathematics in Contemporary Mathematics, 2010, formula S115.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2) * eta(q^9) * eta(q^36) / (eta(q) * eta(q^4) * eta(q^18)) in powers of q.
Euler transform of period 36 sequence [ 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1 * u2 - (1 + u1 + u2) * (u3 + u6 + 3 * u3 * u6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = (1/3) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132976.
G.f.: x * Product_{k>0} P(3,x^k) * P(9,x^k) * P(12,x^k) * P(36,x^k) where P(n,x) is the n-th cyclotomic polynomial.
3 * a(n) = A132972(n) unless n=0. a(2*n) = A128129(n). a(2*n + 1) = A132302(n). a(3*n) = A128640(n). Convolution inverse of A132976.
a(n) ~ exp(2*Pi*sqrt(n)/3) / (6 * sqrt(3) * n^(3/4)). - Vaclav Kotesovec, Oct 13 2015
EXAMPLE
G.f. = q + q^2 + q^3 + 2*q^4 + 3*q^5 + 4*q^6 + 5*q^7 + 7*q^8 + 10*q^9 + ...
MATHEMATICA
nmax=60; CoefficientList[Series[Product[(1+x^k) * (1-x^(9*k)) * (1+x^(18*k)) / (1-x^(4*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 13 2015 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/4, q^(9/2)] / EllipticTheta[ 2, Pi/4, q^(1/2)], {q, 0, n}]; (* Michael Somos, Oct 31 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^9 + A) * eta(x^36 + A) / (eta(x + A) * eta(x^4 + A) * eta(x^18 + A)), n))};
CROSSREFS
Cf. A128129, A128640, A132302, A132972, A132976. Essentially the same as A213267.
KEYWORD
nonn
AUTHOR
Michael Somos, Sep 07 2007
STATUS
approved
Expansion of f(-x, -x^5) * f(-x)^2 / f(-x^6)^3 in powers of x where f(, ) and f() are Ramanujan theta functions.
+10
6
1, -3, 1, 3, -1, 0, 1, -6, 0, 6, -3, 3, 4, -12, 1, 12, -6, 3, 5, -24, 1, 24, -10, 6, 11, -42, 4, 42, -19, 12, 17, -72, 4, 69, -31, 18, 31, -120, 9, 114, -50, 30, 46, -189, 11, 180, -79, 48, 77, -294, 21, 276, -122, 72, 112, -450, 28, 420, -183, 108, 173, -672
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(1/3) * eta(q)^3 / (eta(q^2) * eta(q^3) * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ -3, -2, -2, -2, -3, 0, ...].
Given g.f. A(x), then B(q) = A(q^3) / (3*q) satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (v^2 - 2*u)^3 - u^4 * (2*u - 3*v^2) * (4*u - 3*v^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 6 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132302.
a(2*n) = A132179(n). a(2*n + 1) = -3 * A092848(n). - Michael Somos, Nov 01 2015
EXAMPLE
G.f. = 1 - 3*x + x^2 + 3*x^3 - x^4 + x^6 - 6*x^7 + 6*x^9 - 3*x^10 + 3*x^11 + ...
G.f. = 1/q - 3*q^2 + q^5 + 3*q^8 - q^11 + q^17 - 6*q^20 + 6*q^26 - 3*q^29 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^6] QPochhammer[ x^5, x^6] QPochhammer[ x]^2 / QPochhammer[ x^6]^2, {x, 0, n}]; (* Michael Somos, Nov 01 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^6 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Aug 17 2007
STATUS
approved
Expansion of b(q) / b(q^2) in powers of q where b() is a cubic AGM theta function.
+10
6
1, -3, 3, -3, 6, -9, 12, -15, 21, -30, 36, -45, 60, -78, 96, -117, 150, -189, 228, -276, 342, -420, 504, -603, 732, -885, 1050, -1245, 1488, -1773, 2088, -2454, 2901, -3420, 3996, -4662, 5460, -6378, 7404, -8583, 9972, -11565, 13344, -15378, 17748, -20448
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
For n >= 1, a(n)/3 is a weighted count of overpartitions with restricted odd differences. Namely, the number of overpartitions of n counted with weight (-1)^(the largest part) and such that: (i) the difference between successive parts may be odd only if the larger part is overlined and (ii) the smallest part of the overpartition is odd and overlined. - Jeremy Lovejoy, Aug 07 2015
LINKS
K. Bringmann, J. Dousse, J. Lovejoy, and K. Mahlburg, Overpartitions with restricted odd differences, Electron. J. Combin. 22 (2015), no.3, paper 3.17.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of chi(-q)^3 / chi(-q^3) in powers of q where chi() is a Ramanujan theta function.
Expansion of eta(q)^3 * eta(q^6) / (eta(q^2)^3 * eta(q^3)) in powers of q.
Euler transform of period 6 sequence [ -3, 0, -2, 0, -3, 0, ...].
G.f.: Product_{k>0} (1 - x^(2*k-1))^3 / (1 - x^(6*k-3)).
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = v^2 - u * (2 - u*v).
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u * (u^2 - 2*u + 4) - v^3 * (u^2 + u + 1).
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1 * (u6^2 - u2 * u3) - u6 * (u3^2 - u6*u2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A092848.
a(n) = -3 * A124243(n) unless n=0. a(n) = (-1)^n * A132972(n).
a(2*n) = A128128(n). a(2*n + 1) = - 3* A132302(n).
Convolution inverse of A128128.
Empirical: Sum_{n>=1} exp(-Pi)^(n-1)*(-1)^(n+1)*a(n) = (-2+2*3^(1/2))^(1/3). - Simon Plouffe, Feb 20 2011
a(n) ~ (-1)^n * exp(2*Pi*sqrt(n)/3) / (2*sqrt(3)*n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
EXAMPLE
G.f. = 1 - 3*q + 3*q^2 - 3*q^3 + 6*q^4 - 9*q^5 + 12*q^6 - 15*q^7 + 21*q^8 + ...
MAPLE
with(numtheory):
a:= proc(n) option remember:
`if`(n=0, 1, add(add(d*[0, -3, 0, -2, 0, -3]
[irem(d, 6)+1], d=divisors(j))*a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..60); # Alois P. Heinz, Aug 08 2015
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^3 QPochhammer[ -x^3, x^3], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
a[n_] := a[n] = If[n==0, 1, Sum[Sum[d{0, -3, 0, -2, 0, -3}[[Mod[d, 6]+1]], {d, Divisors[j]}] a[n-j], {j, 1, n}]/n];
a /@ Range[0, 60] (* Jean-François Alcover, Jan 01 2021, after Alois P. Heinz *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^6 + A) / (eta(x^2 + A)^3 * eta(x^3 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jun 04 2008, Aug 12 2009
STATUS
approved
Expansion of f(q, q^2) * f(-q^3) / f(-q^2)^2 in powers of q where f(, ), f() are Ramanujan theta functions.
+10
4
1, 1, 3, 1, 6, 3, 12, 5, 21, 10, 36, 15, 60, 26, 96, 39, 150, 63, 228, 92, 342, 140, 504, 201, 732, 295, 1050, 415, 1488, 591, 2088, 818, 2901, 1140, 3996, 1554, 5460, 2126, 7404, 2861, 9972, 3855, 13344, 5126, 17748, 6816, 23472, 8970, 30876, 11793, 40413
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^3)^3 / (eta(q) * eta(q^2) * eta(q^6)) in powers of q.
Euler transform of period 6 sequence [ 1, 2, -2, 2, 1, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (v^2 - 2*u)^3 - u^4 * (2*u - 3*v^2) * (4*u - 3*v^2).
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (2/3) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A132179.
G.f.: Product_{k>0} (1 + x^k + x^(2*k))^2 / ( (1 + x^k)^2 * (1 - x^k + x^(2*k))).
a(2*n) = A128128(n). a(2*n + 1) = A132302(n).
EXAMPLE
G.f. = 1 + q + 3*q^2 + q^3 + 6*q^4 + 3*q^5 + 12*q^6 + 5*q^7 + 21*q^8 + 10*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ q^3]^3 / (QPochhammer[ q] QPochhammer[ q^2] QPochhammer[ q^6]), {q, 0, n}]; (* Michael Somos, Apr 26 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^3] QPochhammer[ -q^2, q^3] QPochhammer[ q^3]^2 / QPochhammer[ q^2]^2, {q, 0, n}]; (* Michael Somos, Nov 01 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A)^3 / (eta(x + A) * eta(x^2 + A) * eta(x^6 + A)), n))};
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Aug 12 2007
STATUS
approved
Expansion of phi(q^9) / (psi(-q) * chi(q^3)) in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
+10
3
1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 12, 15, 20, 26, 32, 39, 50, 63, 76, 92, 114, 140, 168, 201, 244, 295, 350, 415, 496, 591, 696, 818, 967, 1140, 1332, 1554, 1820, 2126, 2468, 2861, 3324, 3855, 4448, 5126, 5916, 6816, 7824, 8970, 10292, 11793, 13471, 15372, 17548
OFFSET
0,5
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2) * eta(q^3) * eta(q^12) * eta(q^18)^5 / (eta(q) * eta(q^4) * eta(q^6)^2 * eta(q^9)^2 * eta(q^36)^2) in powers of q.
Euler transform of period 36 sequence [ 1, 0, 0, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 0, 0, 1, 1, -2, 1, 1, 0, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 1, 0, 0, 1, 0, ...].
a(n) = A132975(n) unless n=0.
a(2*n) = A128129(n). a(2*n + 1) = A132302.
a(3*n) = A164617(n). a(3*n + 1) = A132977(n). a(3*n + 2) = A132978(n).
a(n) ~ exp(2*Pi*sqrt(n)/3) / (2 * 3^(3/2) * n^(3/4)). - Vaclav Kotesovec, Oct 14 2015
EXAMPLE
1 + q + q^2 + q^3 + 2*q^4 + 3*q^5 + 4*q^6 + 5*q^7 + 7*q^8 + 10*q^9 + ...
MATHEMATICA
nmax=60; CoefficientList[Series[Product[(1+x^k) * (1+x^(6*k)) * (1+x^(9*k))^5 * (1-x^(9*k))^3 / ((1-x^(4*k)) * (1+x^(3*k)) * (1-x^(36*k))^2), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 14 2015 *)
PROG
(PARI) {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A) * eta(x^18 + A)^5 / (eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^2 * eta(x^9 + A)^2 * eta(x^36 + A)^2), n))}
KEYWORD
nonn
AUTHOR
Michael Somos, Jun 07 2012
STATUS
approved
Expansion of f(x, x^5) * f(-x^6) / f(x)^2 in powers of x where f() is a Ramanujan theta function.
+10
3
1, -1, 3, -5, 10, -15, 26, -39, 63, -92, 140, -201, 295, -415, 591, -818, 1140, -1554, 2126, -2861, 3855, -5126, 6816, -8970, 11793, -15372, 20007, -25857, 33356, -42771, 54734, -69683, 88530, -111968, 141312, -177642, 222842, -278557, 347484, -432095, 536230
OFFSET
0,3
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/2) * eta(q) * eta(q^3) * eta(q^4) * eta(q^12) / eta(q^2)^4 in powers of q.
Euler transform of period 12 sequence [ -1, 3, -2, 2, -1, 2, -1, 2, -2, 3, -1, 0, ...].
a(n) = (-1)^n * A132302(n). 2 * a(n) = A254372(2*n + 1).
EXAMPLE
G.f. = 1 - x + 3*x^2 - 5*x^3 + 10*x^4 - 15*x^5 + 26*x^6 - 39*x^7 + ...
G.f. = q - q^3 + 3*q^5 - 5*q^7 + 10*q^9 - 15*q^11 + 26*q^13 - 39*q^15 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x^3] QPochhammer[ x^12] / (QPochhammer[ x^2] QPochhammer[ -x]), {x, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^3 + A) * eta(x^4 + A) * eta(x^12 + A) / eta(x^2 + A)^4, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jan 29 2015
STATUS
approved
Expansion of c(q^3) / (c(q^3) + c(q^6)) where c() is a cubic AGM function.
+10
2
1, -1, 1, -1, 2, -3, 4, -5, 7, -10, 12, -15, 20, -26, 32, -39, 50, -63, 76, -92, 114, -140, 168, -201, 244, -295, 350, -415, 496, -591, 696, -818, 967, -1140, 1332, -1554, 1820, -2126, 2468, -2861, 3324, -3855, 4448, -5126, 5916, -6816, 7824, -8970, 10292, -11793, 13471, -15372, 17548, -20007
OFFSET
0,5
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of 1 - q * psi(q^9) / psi(q) = phi(-q^9) / (psi(q) * chi(-q^3)) in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of eta(q) * eta(q^6) * eta(q^9)^2 / (eta(q^2)^2 * eta(q^3) * eta(q^18)), in powers of q.
Euler transform of period 18 sequence [ -1, 1, 0, 1, -1, 1, -1, 1, -2, 1, -1, 1, -1, 1, 0, 1, -1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (18 t)) = (2/3) g(t) where q = exp(2 Pi i t) and g() is the g.f. of A139032.
G.f.: Product_{k>0} (P(3, x^k) * P(9, x^k)) / (P(4, x^k)^2 * P(18, x^k)) where P(n, x) is the n-th cyclotomic polynomial.
Convolution inverse of A139032.
a(n) = - A124243(n) unless n=0. a(2*n) = A128129(n) = a(2*n) unless n=0.
a(2*n + 1) = - A132302(n). a(3*n) = A128641(n).
EXAMPLE
G.f. = 1 - q + q^2 - q^3 + 2*q^4 - 3*q^5 + 4*q^6 - 5*q^7 + 7*q^8 - 10*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1 - EllipticTheta[ 2, 0, x^(9/2)] / EllipticTheta[ 2, 0, x^(1/2)], {x, 0, n}]; (* Michael Somos, Aug 26 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^6 + A) * eta(x^9 + A)^2 / (eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^18 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Oct 26 2008
STATUS
approved

Search completed in 0.008 seconds